These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 33674566)

  • 1. De novo design of a reversible phosphorylation-dependent switch for membrane targeting.
    Harrington L; Fletcher JM; Heermann T; Woolfson DN; Schwille P
    Nat Commun; 2021 Mar; 12(1):1472. PubMed ID: 33674566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein Interaction Kinetics Delimit the Performance of Phosphorylation-Driven Protein Switches.
    Winter DL; Wairara AR; Bennett JL; Donald WA; Glover DJ
    ACS Synth Biol; 2024 Jun; 13(6):1781-1797. PubMed ID: 38830815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering a de novo-designed coiled-coil heterodimerization domain off the rapid detection, purification and characterization of recombinantly expressed peptides and proteins.
    Tripet B; Yu L; Bautista DL; Wong WY; Irvin RT; Hodges RS
    Protein Eng; 1996 Nov; 9(11):1029-42. PubMed ID: 8961356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo design of a molecular switch: phosphorylation-dependent association of designed peptides.
    Signarvic RS; DeGrado WF
    J Mol Biol; 2003 Nov; 334(1):1-12. PubMed ID: 14596795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational Design of Phosphorylation-Responsive Coiled Coil-Peptide Assemblies.
    Thompson HF; Beesley JL; Langlands HD; Edgell CL; Savery NJ; Woolfson DN
    ACS Synth Biol; 2023 Apr; 12(4):1308-1319. PubMed ID: 36988263
    [No Abstract]   [Full Text] [Related]  

  • 6. Local Self-Enhancement of MinD Membrane Binding in Min Protein Pattern Formation.
    Heermann T; Ramm B; Glaser S; Schwille P
    J Mol Biol; 2020 May; 432(10):3191-3204. PubMed ID: 32199984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo motif for kinase mediated signaling across the cell membrane.
    Petty RT; Mrksich M
    Integr Biol (Camb); 2011 Aug; 3(8):816-22. PubMed ID: 21776530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MinE conformational switching confers robustness on self-organized Min protein patterns.
    Denk J; Kretschmer S; Halatek J; Hartl C; Schwille P; Frey E
    Proc Natl Acad Sci U S A; 2018 May; 115(18):4553-4558. PubMed ID: 29666276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toehold switches: de-novo-designed regulators of gene expression.
    Green AA; Silver PA; Collins JJ; Yin P
    Cell; 2014 Nov; 159(4):925-39. PubMed ID: 25417166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel conditional Akt 'survival switch' reversibly protects cells from apoptosis.
    Li B; Desai SA; MacCorkle-Chosnek RA; Fan L; Spencer DM
    Gene Ther; 2002 Feb; 9(4):233-44. PubMed ID: 11896462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small-residue packing motifs modulate the structure and function of a minimal de novo membrane protein.
    Curnow P; Hardy BJ; Dufour V; Arthur CJ; Stenner R; Hodgson LR; Verkade P; Williams C; Shoemark DK; Sessions RB; Crump MP; Jones MR; Anderson JLR
    Sci Rep; 2020 Sep; 10(1):15203. PubMed ID: 32938984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A link between dimerization and autophosphorylation of the response regulator PhoB.
    Creager-Allen RL; Silversmith RE; Bourret RB
    J Biol Chem; 2013 Jul; 288(30):21755-69. PubMed ID: 23760278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. System-level mapping of Escherichia coli response regulator dimerization with FRET hybrids.
    Gao R; Tao Y; Stock AM
    Mol Microbiol; 2008 Sep; 69(6):1358-72. PubMed ID: 18631241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De novo design of bioactive protein switches.
    Langan RA; Boyken SE; Ng AH; Samson JA; Dods G; Westbrook AM; Nguyen TH; Lajoie MJ; Chen Z; Berger S; Mulligan VK; Dueber JE; Novak WRP; El-Samad H; Baker D
    Nature; 2019 Aug; 572(7768):205-210. PubMed ID: 31341284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimerization of a Proline-Rich Antimicrobial Peptide, Chex-Arg20, Alters Its Mechanism of Interaction with the Escherichia coli Membrane.
    Li W; O'Brien-Simpson NM; Tailhades J; Pantarat N; Dawson RM; Otvos L; Reynolds EC; Separovic F; Hossain MA; Wade JD
    Chem Biol; 2015 Sep; 22(9):1250-8. PubMed ID: 26384569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. H-Ras forms dimers on membrane surfaces via a protein-protein interface.
    Lin WC; Iversen L; Tu HL; Rhodes C; Christensen SM; Iwig JS; Hansen SD; Huang WY; Groves JT
    Proc Natl Acad Sci U S A; 2014 Feb; 111(8):2996-3001. PubMed ID: 24516166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein misfolding in the cell envelope of Escherichia coli: new signaling pathways.
    Missiakas D; Raina S
    Trends Biochem Sci; 1997 Feb; 22(2):59-63. PubMed ID: 9048484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Escherichia coli expression and refolding of E/K-coil-tagged EGF generates fully bioactive EGF for diverse applications.
    Le PU; Lenferink AE; Pinard M; Baardsnes J; Massie B; O'Connor-McCourt MD
    Protein Expr Purif; 2009 Apr; 64(2):108-17. PubMed ID: 19061959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic protein switches: design principles and applications.
    Stein V; Alexandrov K
    Trends Biotechnol; 2015 Feb; 33(2):101-10. PubMed ID: 25535088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Programmable biomolecular switches for rewiring flux in Escherichia coli.
    Gao C; Hou J; Xu P; Guo L; Chen X; Hu G; Ye C; Edwards H; Chen J; Chen W; Liu L
    Nat Commun; 2019 Aug; 10(1):3751. PubMed ID: 31434894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.