BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 33674582)

  • 1. Single cell transcriptomics reveals lineage trajectory of retinal ganglion cells in wild-type and Atoh7-null retinas.
    Wu F; Bard JE; Kann J; Yergeau D; Sapkota D; Ge Y; Hu Z; Wang J; Liu T; Mu X
    Nat Commun; 2021 Mar; 12(1):1465. PubMed ID: 33674582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two transcription factors, Pou4f2 and Isl1, are sufficient to specify the retinal ganglion cell fate.
    Wu F; Kaczynski TJ; Sethuramanujam S; Li R; Jain V; Slaughter M; Mu X
    Proc Natl Acad Sci U S A; 2015 Mar; 112(13):E1559-68. PubMed ID: 25775587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two new genetically modified mouse alleles labeling distinct phases of retinal ganglion cell development by fluorescent proteins.
    Ge Y; Wu F; Cheng M; Bard J; Mu X
    Dev Dyn; 2020 Dec; 249(12):1514-1528. PubMed ID: 32741043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome of Atoh7 retinal progenitor cells identifies new Atoh7-dependent regulatory genes for retinal ganglion cell formation.
    Gao Z; Mao CA; Pan P; Mu X; Klein WH
    Dev Neurobiol; 2014 Nov; 74(11):1123-40. PubMed ID: 24799426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal transcriptional repressor REST suppresses an Atoh7-independent program for initiating retinal ganglion cell development.
    Mao CA; Tsai WW; Cho JH; Pan P; Barton MC; Klein WH
    Dev Biol; 2011 Jan; 349(1):90-9. PubMed ID: 20969844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of
    Zhang Q; Zagozewski J; Cheng S; Dixit R; Zhang S; de Melo J; Mu X; Klein WH; Brown NL; Wigle JT; Schuurmans C; Eisenstat DD
    Development; 2017 May; 144(9):1698-1711. PubMed ID: 28356311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reprogramming amacrine and photoreceptor progenitors into retinal ganglion cells by replacing Neurod1 with Atoh7.
    Mao CA; Cho JH; Wang J; Gao Z; Pan P; Tsai WW; Frishman LJ; Klein WH
    Development; 2013 Feb; 140(3):541-51. PubMed ID: 23293286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene regulation logic in retinal ganglion cell development: Isl1 defines a critical branch distinct from but overlapping with Pou4f2.
    Mu X; Fu X; Beremand PD; Thomas TL; Klein WH
    Proc Natl Acad Sci U S A; 2008 May; 105(19):6942-7. PubMed ID: 18460603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isl1 and Pou4f2 form a complex to regulate target genes in developing retinal ganglion cells.
    Li R; Wu F; Ruonala R; Sapkota D; Hu Z; Mu X
    PLoS One; 2014; 9(3):e92105. PubMed ID: 24643061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overlapping spatiotemporal patterns of regulatory gene expression are required for neuronal progenitors to specify retinal ganglion cell fate.
    Kiyama T; Mao CA; Cho JH; Fu X; Pan P; Mu X; Klein WH
    Vision Res; 2011 Jan; 51(2):251-9. PubMed ID: 20951721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rbpj cell autonomous regulation of retinal ganglion cell and cone photoreceptor fates in the mouse retina.
    Riesenberg AN; Liu Z; Kopan R; Brown NL
    J Neurosci; 2009 Oct; 29(41):12865-77. PubMed ID: 19828801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterochronic misexpression of Ascl1 in the Atoh7 retinal cell lineage blocks cell cycle exit.
    Hufnagel RB; Riesenberg AN; Quinn M; Brzezinski JA; Glaser T; Brown NL
    Mol Cell Neurosci; 2013 May; 54():108-20. PubMed ID: 23481413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adult mice transplanted with embryonic retinal progenitor cells: new approach for repairing damaged optic nerves.
    Cho JH; Mao CA; Klein WH
    Mol Vis; 2012; 18():2658-72. PubMed ID: 23170059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ISL1 and BRN3B co-regulate the differentiation of murine retinal ganglion cells.
    Pan L; Deng M; Xie X; Gan L
    Development; 2008 Jun; 135(11):1981-90. PubMed ID: 18434421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The
    Miesfeld JB; Ghiasvand NM; Marsh-Armstrong B; Marsh-Armstrong N; Miller EB; Zhang P; Manna SK; Zawadzki RJ; Brown NL; Glaser T
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21690-21700. PubMed ID: 32817515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Islet-1 controls the differentiation of retinal bipolar and cholinergic amacrine cells.
    Elshatory Y; Everhart D; Deng M; Xie X; Barlow RB; Gan L
    J Neurosci; 2007 Nov; 27(46):12707-20. PubMed ID: 18003851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcription factors SOX4 and SOX11 function redundantly to regulate the development of mouse retinal ganglion cells.
    Jiang Y; Ding Q; Xie X; Libby RT; Lefebvre V; Gan L
    J Biol Chem; 2013 Jun; 288(25):18429-38. PubMed ID: 23649630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epitope-tagging Math5 and Pou4f2: new tools to study retinal ganglion cell development in the mouse.
    Fu X; Kiyama T; Li R; Russell M; Klein WH; Mu X
    Dev Dyn; 2009 Sep; 238(9):2309-17. PubMed ID: 19459208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brn-3b inhibits generation of amacrine cells by binding to and negatively regulating DLX1/2 in developing retina.
    Feng L; Eisenstat DD; Chiba S; Ishizaki Y; Gan L; Shibasaki K
    Neuroscience; 2011 Nov; 195():9-20. PubMed ID: 21875655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiation of retinal ganglion cells and photoreceptor precursors from mouse induced pluripotent stem cells carrying an Atoh7/Math5 lineage reporter.
    Xie BB; Zhang XM; Hashimoto T; Tien AH; Chen A; Ge J; Yang XJ
    PLoS One; 2014; 9(11):e112175. PubMed ID: 25401462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.