These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 33674645)

  • 1. Design of micromagnetic arrays for on-chip separation of superparamagnetic bead aggregates and detection of a model protein and double-stranded DNA analytes.
    Rampini S; Li P; Gandhi D; Mutas M; Ran YF; Carr M; Lee GU
    Sci Rep; 2021 Mar; 11(1):5302. PubMed ID: 33674645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micromagnet arrays for on-chip focusing, switching, and separation of superparamagnetic beads and single cells.
    Rampini S; Kilinc D; Li P; Monteil C; Gandhi D; Lee GU
    Lab Chip; 2015 Aug; 15(16):3370-9. PubMed ID: 26160691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micromagnet arrays enable precise manipulation of individual biological analyte-superparamagnetic bead complexes for separation and sensing.
    Rampini S; Li P; Lee GU
    Lab Chip; 2016 Oct; 16(19):3645-63. PubMed ID: 27542153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical detection of the magnetophoretic transport of superparamagnetic beads on a micromagnetic array.
    Gandhi D; Li P; Rampini S; Parent C; Lee GU
    Sci Rep; 2020 Jul; 10(1):12876. PubMed ID: 32733006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct identification of the herpes simplex virus UL27 gene through single particle manipulation and optical detection using a micromagnetic array.
    Li P; Gandhi D; Mutas M; Ran YF; Carr M; Rampini S; Hall W; Lee GU
    Nanoscale; 2020 Feb; 12(5):3482-3490. PubMed ID: 31971211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Traveling wave magnetophoresis for high resolution chip based separations.
    Yellen BB; Erb RM; Son HS; Hewlin R; Shang H; Lee GU
    Lab Chip; 2007 Dec; 7(12):1681-8. PubMed ID: 18030387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear dynamics of superparamagnetic beads in a traveling magnetic-field wave.
    Yellen BB; Virgin LN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011402. PubMed ID: 19658704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow-enhanced nonlinear magnetophoresis for high-resolution bioseparation.
    Li P; Mahmood A; Lee GU
    Langmuir; 2011 May; 27(10):6496-503. PubMed ID: 21506584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-chip magnetic separation of superparamagnetic beads for integrated molecular analysis.
    Florescu O; Wang K; Au P; Tang J; Harris E; Beatty PR; Boser BE
    J Appl Phys; 2010 Mar; 107(5):54702. PubMed ID: 20368988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of superparamagnetic beads through a two-dimensional potential energy landscape.
    Tahir MA; Gao L; Virgin LN; Yellen BB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011403. PubMed ID: 21867167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis.
    Krishnan JN; Kim C; Park HJ; Kang JY; Kim TS; Kim SK
    Electrophoresis; 2009 May; 30(9):1457-63. PubMed ID: 19425001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid, highly sensitive detection of herpes simplex virus-1 using multiple antigenic peptide-coated superparamagnetic beads.
    Ran YF; Fields C; Muzard J; Liauchuk V; Carr M; Hall W; Lee GU
    Analyst; 2014 Dec; 139(23):6126-34. PubMed ID: 25273875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lab-on-a-Chip Magneto-Immunoassays: How to Ensure Contact between Superparamagnetic Beads and the Sensor Surface.
    Eickenberg B; Meyer J; Helmich L; Kappe D; Auge A; Weddemann A; Wittbracht F; Hütten A
    Biosensors (Basel); 2013 Sep; 3(3):327-40. PubMed ID: 25586262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dose-response curve of a microfluidic magnetic bead-based surface coverage sandwich assay.
    Cornaglia M; Trouillon R; Tekin HC; Lehnert T; Gijs MA
    N Biotechnol; 2015 Sep; 32(5):433-40. PubMed ID: 25817550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic magnetic bead conveyor belt.
    van Pelt S; Frijns A; den Toonder J
    Lab Chip; 2017 Nov; 17(22):3826-3840. PubMed ID: 28990614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulation of Superparamagnetic Beads on Patterned Exchange-Bias Layer Systems for Biosensing Applications.
    Ehresmann A; Koch I; Holzinger D
    Sensors (Basel); 2015 Nov; 15(11):28854-88. PubMed ID: 26580625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-chip immuno-agglutination assay with analyte capture by dynamic manipulation of superparamagnetic beads.
    Moser Y; Lehnert T; Gijs MA
    Lab Chip; 2009 Nov; 9(22):3261-7. PubMed ID: 19865734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research on magnetic bead motion characteristics based on magnetic beads preset technology.
    Li Z; Zu X; Du Z; Hu Z
    Sci Rep; 2021 Oct; 11(1):19995. PubMed ID: 34620919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic trajectory analysis of superparamagnetic beads driven by on-chip micromagnets.
    Hu X; Abedini-Nassab R; Lim B; Yang Y; Howdyshell M; Sooryakumar R; Yellen BB; Kim C
    J Appl Phys; 2015 Nov; 118(20):203904. PubMed ID: 26648596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous-Flow Separation of Magnetic Particles from Biofluids: How Does the Microdevice Geometry Determine the Separation Performance?
    González Fernández C; Gómez Pastora J; Basauri A; Fallanza M; Bringas E; Chalmers JJ; Ortiz I
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32471054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.