These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 33674653)

  • 1. A centrifugal microfluidic cross-flow filtration platform to separate serum from whole blood for the detection of amphiphilic biomarkers.
    Lenz KD; Jakhar S; Chen JW; Anderson AS; Purcell DC; Ishak MO; Harris JF; Akhadov LE; Kubicek-Sutherland JZ; Nath P; Mukundan H
    Sci Rep; 2021 Mar; 11(1):5287. PubMed ID: 33674653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes.
    Li X; Chen W; Liu G; Lu W; Fu J
    Lab Chip; 2014 Jul; 14(14):2565-75. PubMed ID: 24895109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deformability and size-based cancer cell separation using an integrated microfluidic device.
    Pang L; Shen S; Ma C; Ma T; Zhang R; Tian C; Zhao L; Liu W; Wang J
    Analyst; 2015 Nov; 140(21):7335-46. PubMed ID: 26366443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Immunoaffinity Basophil Activation Test for Point-of-Care Allergy Diagnosis.
    Aljadi Z; Kalm F; Ramachandraiah H; Nopp A; Lundahl J; Russom A
    J Appl Lab Med; 2019 Sep; 4(2):152-163. PubMed ID: 31639660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous Cell Separation Using Microfluidic-Based Cell Retention Device with Alternative Boosted Flow.
    Chen PH; Cheng YT; Ni BS; Huang JH
    Appl Biochem Biotechnol; 2020 May; 191(1):151-163. PubMed ID: 32086707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micropump integrated white blood cell separation platform for detection of chronic granulomatous disease.
    Mane S; Behera A; Hemadri V; Bhand S; Tripathi S
    Mikrochim Acta; 2024 May; 191(5):295. PubMed ID: 38700804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid isolation of cfDNA from large-volume whole blood on a centrifugal microfluidic chip based on immiscible phase filtration.
    Hu F; Li J; Peng N; Li Z; Zhang Z; Zhao S; Duan M; Tian H; Li L; Zhang P
    Analyst; 2019 Jul; 144(14):4162-4174. PubMed ID: 31166335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Microfluidic Device for Simultaneous Extraction of Plasma, Red Blood Cells, and On-Chip White Blood Cell Trapping.
    Kuan DH; Wu CC; Su WY; Huang NT
    Sci Rep; 2018 Oct; 8(1):15345. PubMed ID: 30337656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Centrifugal Microfluidic Platform That Separates Whole Blood Samples into Multiple Removable Fractions Due to Several Discrete but Continuous Density Gradient Sections.
    Moen ST; Hatcher CL; Singh AK
    PLoS One; 2016; 11(4):e0153137. PubMed ID: 27054764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Passive Microfluidic Device Based on Crossflow Filtration for Cell Separation Measurements: A Spectrophotometric Characterization.
    Faustino V; Catarino SO; Pinho D; Lima RA; Minas G
    Biosensors (Basel); 2018 Dec; 8(4):. PubMed ID: 30544881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous Separation of White Blood Cells From Whole Blood Using Viscoelastic Effects.
    Tan JKS; Park SY; Leo HL; Kim S
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1431-1437. PubMed ID: 28981424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fully Automated Centrifugal Microfluidic Device for Ultrasensitive Protein Detection from Whole Blood.
    Park YS; Sunkara V; Kim Y; Lee WS; Han JR; Cho YK
    J Vis Exp; 2016 Apr; (110):. PubMed ID: 27167836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Chip Inlet Geometry in Microfluidic Devices for Cell Studies.
    Sun YS
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27314318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches.
    Dalili A; Samiei E; Hoorfar M
    Analyst; 2018 Dec; 144(1):87-113. PubMed ID: 30402633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of size-based particle separation throughput in slanted spiral microchannel by modifying outlet geometry.
    Mihandoust A; Maleki-Jirsaraei N; Rouhani S; Safi S; Alizadeh M
    Electrophoresis; 2020 Mar; 41(5-6):353-359. PubMed ID: 32012295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraction of Cell-Free Whole Blood Plasma Using a Dielectrophoresis-Based Microfluidic Device.
    Yang F; Zhang Y; Cui X; Fan Y; Xue Y; Miao H; Li G
    Biotechnol J; 2019 Mar; 14(3):e1800181. PubMed ID: 29952079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-phase flow in microfluidic-chip design of hydrodynamic filtration for cell particle sorting.
    Yoon K; Jung HW; Chun MS
    Electrophoresis; 2020 Jun; 41(10-11):1002-1010. PubMed ID: 32097495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Performance Passive Plasma Separation on OSTE Pillar Forest.
    Xiao Z; Sun L; Yang Y; Feng Z; Dai S; Yang H; Zhang X; Sheu CL; Guo W
    Biosensors (Basel); 2021 Sep; 11(10):. PubMed ID: 34677311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A lab-on-a-chip for rapid blood separation and quantification of hematocrit and serum analytes.
    Browne AW; Ramasamy L; Cripe TP; Ahn CH
    Lab Chip; 2011 Jul; 11(14):2440-6. PubMed ID: 21655589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications.
    Crowley TA; Pizziconi V
    Lab Chip; 2005 Sep; 5(9):922-9. PubMed ID: 16100575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.