These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33674684)

  • 41. Quantification of upper limb position sense using an exoskeleton and a virtual reality display.
    Deblock-Bellamy A; Batcho CS; Mercier C; Blanchette AK
    J Neuroeng Rehabil; 2018 Mar; 15(1):24. PubMed ID: 29548326
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A preliminary study for quantitative assessment of upper limb proprioception.
    Contu S; Hussain A; Masia L; Campolo D
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4614-4617. PubMed ID: 28269303
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Robotic assessment of the contribution of motor commands to wrist position sense.
    Contu S; Marini F; Masia L
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():941-946. PubMed ID: 28813942
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sensorimotor Robotic Measures of tDCS- and HD-tDCS-Enhanced Motor Learning in Children.
    Cole L; Dukelow SP; Giuffre A; Nettel-Aguirre A; Metzler MJ; Kirton A
    Neural Plast; 2018; 2018():5317405. PubMed ID: 30662456
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Proprioceptive assessment in clinical settings: Evaluation of joint position sense in upper limb post-stroke using a robotic manipulator.
    Contu S; Hussain A; Kager S; Budhota A; Deshmukh VA; Kuah CWK; Yam LHL; Xiang L; Chua KSG; Masia L; Campolo D
    PLoS One; 2017; 12(11):e0183257. PubMed ID: 29161264
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Age-related declines in the detection of passive wrist movement.
    Wright ML; Adamo DE; Brown SH
    Neurosci Lett; 2011 Aug; 500(2):108-12. PubMed ID: 21704124
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Robot-Aided Upper-limb Proprioceptive Training in Three-Dimensional Space.
    Valdes BA; Khoshnam M; Neva JL; Menon C
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():121-126. PubMed ID: 31374617
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Corticospinal facilitation following prolonged proprioceptive stimulation by means of passive wrist movement.
    Macé MJ; Levin O; Alaerts K; Rothwell JC; Swinnen SP
    J Clin Neurophysiol; 2008 Aug; 25(4):202-9. PubMed ID: 18677184
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Proprioceptive feedback is reduced during adaptation to a visuomotor transformation: preliminary findings.
    Jones KE; Wessberg J; Vallbo A
    Neuroreport; 2001 Dec; 12(18):4029-33. PubMed ID: 11742233
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of visuomotor adaptation on proprioceptive localization: the contributions of perceptual and motor changes.
    Clayton HA; Cressman EK; Henriques DY
    Exp Brain Res; 2014 Jul; 232(7):2073-86. PubMed ID: 24623356
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Relative independence of upper limb position sense and reaching in children with hemiparetic perinatal stroke.
    Kuczynski AM; Kirton A; Semrau JA; Dukelow SP
    J Neuroeng Rehabil; 2021 May; 18(1):80. PubMed ID: 33980254
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Similar effects of two different external supports on wrist joint position sense in healthy subjects: A randomized clinical trial.
    Ucuzoglu ME; Unver B; Sarac DC; Cilga G
    Hand Surg Rehabil; 2020 Apr; 39(2):96-101. PubMed ID: 31846745
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of proprioception in denervated and healthy wrist joints.
    Rein S; Winter J; Kremer T; Siemers F; Range U; Euchner N
    J Hand Surg Eur Vol; 2020 May; 45(4):408-413. PubMed ID: 31930922
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Where is your arm? Variations in proprioception across space and tasks.
    Fuentes CT; Bastian AJ
    J Neurophysiol; 2010 Jan; 103(1):164-71. PubMed ID: 19864441
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients.
    Daly JJ; Ruff RL
    ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neural correlates of proprioceptive integration in the contralesional hemisphere of very impaired patients shortly after a subcortical stroke: an FMRI study.
    Dechaumont-Palacin S; Marque P; De Boissezon X; Castel-Lacanal E; Carel C; Berry I; Pastor J; Albucher JF; Chollet F; Loubinoux I
    Neurorehabil Neural Repair; 2008; 22(2):154-65. PubMed ID: 17916656
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Manual aiming in healthy aging: does proprioceptive acuity make the difference?
    Helsen WF; Van Halewyck F; Levin O; Boisgontier MP; Lavrysen A; Elliott D
    Age (Dordr); 2016 Apr; 38(2):45. PubMed ID: 27044301
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke.
    Rong W; Li W; Pang M; Hu J; Wei X; Yang B; Wai H; Zheng X; Hu X
    J Neuroeng Rehabil; 2017 Apr; 14(1):34. PubMed ID: 28446181
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The ipsilateral motor cortex contributes to cross-limb transfer of performance gains after ballistic motor practice.
    Lee M; Hinder MR; Gandevia SC; Carroll TJ
    J Physiol; 2010 Jan; 588(Pt 1):201-12. PubMed ID: 19917563
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multi-joint Assessment of Proprioception Impairments Poststroke.
    Xu D; Kang SH; Lee SJ; Oppizzi G; Zhang LQ
    Arch Phys Med Rehabil; 2024 Mar; 105(3):480-486. PubMed ID: 37714505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.