BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33674748)

  • 1. In vivo CRISPR inactivation of Fos promotes prostate cancer progression by altering the associated AP-1 subunit Jun.
    Riedel M; Berthelsen MF; Cai H; Haldrup J; Borre M; Paludan SR; Hager H; Vendelbo MH; Wagner EF; Bakiri L; Thomsen MK
    Oncogene; 2021 Apr; 40(13):2437-2447. PubMed ID: 33674748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activator protein-1 transcription factors are associated with progression and recurrence of prostate cancer.
    Ouyang X; Jessen WJ; Al-Ahmadie H; Serio AM; Lin Y; Shih WJ; Reuter VE; Scardino PT; Shen MM; Aronow BJ; Vickers AJ; Gerald WL; Abate-Shen C
    Cancer Res; 2008 Apr; 68(7):2132-44. PubMed ID: 18381418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting AP-1 transcription factors by CRISPR in the prostate.
    Riedel M; Cai H; Stoltze IC; Vendelbo MH; Wagner EF; Bakiri L; Thomsen MK
    Oncotarget; 2021 Sep; 12(19):1956-1961. PubMed ID: 34548912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pace of prostatic intraepithelial neoplasia development is determined by the timing of Pten tumor suppressor gene excision.
    Luchman HA; Benediktsson H; Villemaire ML; Peterson AC; Jirik FR
    PLoS One; 2008; 3(12):e3940. PubMed ID: 19081794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conditional deletion of the Pten gene in the mouse prostate induces prostatic intraepithelial neoplasms at early ages but a slow progression to prostate tumors.
    Kwak MK; Johnson DT; Zhu C; Lee SH; Ye DW; Luong R; Sun Z
    PLoS One; 2013; 8(1):e53476. PubMed ID: 23308230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Klf5 deletion promotes Pten deletion-initiated luminal-type mouse prostate tumors through multiple oncogenic signaling pathways.
    Xing C; Ci X; Sun X; Fu X; Zhang Z; Dong EN; Hao ZZ; Dong JT
    Neoplasia; 2014 Nov; 16(11):883-99. PubMed ID: 25425963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PTEN loss and activation of K-RAS and β-catenin cooperate to accelerate prostate tumourigenesis.
    Jefferies MT; Cox AC; Shorning BY; Meniel V; Griffiths D; Kynaston HG; Smalley MJ; Clarke AR
    J Pathol; 2017 Dec; 243(4):442-456. PubMed ID: 29134654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concomitant loss of EAF2/U19 and Pten synergistically promotes prostate carcinogenesis in the mouse model.
    Ai J; Pascal LE; O'Malley KJ; Dar JA; Isharwal S; Qiao Z; Ren B; Rigatti LH; Dhir R; Xiao W; Nelson JB; Wang Z
    Oncogene; 2014 May; 33(18):2286-94. PubMed ID: 23708662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of survivin in the prostate epithelium impedes carcinogenesis in a mouse model of prostate adenocarcinoma.
    Adisetiyo H; Liang M; Liao CP; Aycock-Williams A; Cohen MB; Xu S; Neamati N; Conway EM; Cheng CY; Nikitin AY; Roy-Burman P
    PLoS One; 2013; 8(7):e69484. PubMed ID: 23936028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mouse model of heterogeneous, c-MYC-initiated prostate cancer with loss of Pten and p53.
    Kim J; Roh M; Doubinskaia I; Algarroba GN; Eltoum IE; Abdulkadir SA
    Oncogene; 2012 Jan; 31(3):322-32. PubMed ID: 21685943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of PTEN‑knockout (‑/‑) murine prostate cancer cells using the CRISPR/Cas9 system and comprehensive gene expression profiling.
    Takao A; Yoshikawa K; Karnan S; Ota A; Uemura H; De Velasco MA; Kura Y; Suzuki S; Ueda R; Nishino T; Hosokawa Y
    Oncol Rep; 2018 Nov; 40(5):2455-2466. PubMed ID: 30226608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The comprehensive role of E-cadherin in maintaining prostatic epithelial integrity during oncogenic transformation and tumor progression.
    Olson A; Le V; Aldahl J; Yu EJ; Hooker E; He Y; Lee DH; Kim WK; Cardiff RD; Geradts J; Sun Z
    PLoS Genet; 2019 Oct; 15(10):e1008451. PubMed ID: 31658259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deletion of NKX3.1 via CRISPR/Cas9 Induces Prostatic Intraepithelial Neoplasia in C57BL/6 Mice.
    Park JJ; Kim JE; Jeon Y; Lee MR; Choi JY; Song BR; Park JW; Kang MJ; Choi HJ; Bae SJ; Lee H; Kang BC; Hwang DY
    Technol Cancer Res Treat; 2020; 19():1533033820964425. PubMed ID: 33094683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conditional Deletion of Eaf1 Induces Murine Prostatic Intraepithelial Neoplasia in Mice.
    Pascal LE; Su F; Wang D; Ai J; Song Q; Wang Y; O'Malley KJ; Cross B; Rigatti LH; Green A; Dhir R; Wang Z
    Neoplasia; 2019 Aug; 21(8):752-764. PubMed ID: 31229879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of hepatocyte growth factor/MET signaling initiates oncogenic transformation and enhances tumor aggressiveness in the murine prostate.
    Mi J; Hooker E; Balog S; Zeng H; Johnson DT; He Y; Yu EJ; Wu H; Le V; Lee DH; Aldahl J; Gonzalgo ML; Sun Z
    J Biol Chem; 2018 Dec; 293(52):20123-20136. PubMed ID: 30401749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer.
    Wang S; Gao J; Lei Q; Rozengurt N; Pritchard C; Jiao J; Thomas GV; Li G; Roy-Burman P; Nelson PS; Liu X; Wu H
    Cancer Cell; 2003 Sep; 4(3):209-21. PubMed ID: 14522255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ETS family transcription factors collaborate with alternative signaling pathways to induce carcinoma from adult murine prostate cells.
    Zong Y; Xin L; Goldstein AS; Lawson DA; Teitell MA; Witte ON
    Proc Natl Acad Sci U S A; 2009 Jul; 106(30):12465-70. PubMed ID: 19592505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ETV4 promotes late development of prostatic intraepithelial neoplasia and cell proliferation through direct and p53-mediated downregulation of p21.
    Cosi I; Pellecchia A; De Lorenzo E; Torre E; Sica M; Nesi G; Notaro R; De Angioletti M
    J Hematol Oncol; 2020 Aug; 13(1):112. PubMed ID: 32791988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of estrogen and tamoxifen on the expression pattern of AP-1 factors in MCF-7 cells: role of c-Jun, c-Fos, and Fra-1 in cell cycle regulation.
    Babu RL; Naveen Kumar M; Patil RH; Devaraju KS; Ramesh GT; Sharma SC
    Mol Cell Biochem; 2013 Aug; 380(1-2):143-51. PubMed ID: 23625206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of Nkx3.1 leads to the activation of discrete downstream target genes during prostate tumorigenesis.
    Song H; Zhang B; Watson MA; Humphrey PA; Lim H; Milbrandt J
    Oncogene; 2009 Sep; 28(37):3307-19. PubMed ID: 19597465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.