These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 33675271)
1. Chiral voltammetric sensor for tryptophan enantiomers by using a self-assembled multiwalled carbon nanotubes/polyaniline/sodium alginate composite. Niu X; Yang X; Li H; Shi Q; Wang K Chirality; 2021 May; 33(5):248-260. PubMed ID: 33675271 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical recognition of tryptophan enantiomers using a multi-walled carbon nanotube@polydopamine composite loaded with copper(II). Qian J; Yi Y; Zhang D; Zhu G Mikrochim Acta; 2019 May; 186(6):358. PubMed ID: 31098704 [TBL] [Abstract][Full Text] [Related]
3. An electrochemical chiral sensor based on the synergy of chiral ionic liquid and 3D-NGMWCNT for tryptophan enantioselective recognition. Liu N; Liu J; Niu X; Wang J; Guo R; Mo Z Mikrochim Acta; 2021 Apr; 188(5):163. PubMed ID: 33839948 [TBL] [Abstract][Full Text] [Related]
4. Nafion-stabilized black phosphorus nanosheets-maltosyl-β-cyclodextrin as a chiral sensor for tryptophan enantiomers. Zou J; Yu JG Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110910. PubMed ID: 32409064 [TBL] [Abstract][Full Text] [Related]
5. Electrochemical chiral sensor for recognition of amino acid enantiomers with cyclodextrin-based microporous organic networks. Zhang X; Wang F; Chen Z Anal Chim Acta; 2024 Aug; 1316():342879. PubMed ID: 38969416 [TBL] [Abstract][Full Text] [Related]
6. Metal-organic frameworks (MOFs) composite of polyaniline-CNT@aluminum succinate for non-enzymatic nitrite sensor. Alsafrani AE; Adeosun WA; Alruwais RS; Marwani HM; Asiri AM; Khan A Environ Sci Pollut Res Int; 2023 Jun; 30(27):71322-71339. PubMed ID: 37160857 [TBL] [Abstract][Full Text] [Related]
7. Novel N-Doped Carbon Dots/β-Cyclodextrin Nanocomposites for Enantioselective Recognition of Tryptophan Enantiomers. Xiao Q; Lu S; Huang C; Su W; Huang S Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27834863 [TBL] [Abstract][Full Text] [Related]
8. A sensitive electrochemical sensor for chiral detection of tryptophan enantiomers by using carbon black and β‑cyclodextrin. Liang J; Song Y; Zhao Y; Gao Y; Hou J; Yang G Mikrochim Acta; 2023 Oct; 190(11):433. PubMed ID: 37814099 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of an electrochemical chiral sensor via an integrated polysaccharides/3D nitrogen-doped graphene-CNT frame. Niu X; Yang X; Mo Z; Wang J; Pan Z; Liu Z; Shuai C; Liu G; Liu N; Guo R Bioelectrochemistry; 2020 Feb; 131():107396. PubMed ID: 31704455 [TBL] [Abstract][Full Text] [Related]
11. Voltammetric chiral discrimination of tryptophan using a multilayer nanocomposite with implemented amino-modified β-cyclodextrin as recognition element. Song J; Yang C; Ma J; Han Q; Ran P; Fu Y Mikrochim Acta; 2018 Mar; 185(4):230. PubMed ID: 29594758 [TBL] [Abstract][Full Text] [Related]
12. Carboxymethylcellulose-polyaniline/carbon nanotube (CMC-PANI/CNT) film as flexible and highly electrochemical active electrode for supercapacitors. Xu H; Cui L; Pan X; An Y; Jin X Int J Biol Macromol; 2022 Oct; 219():1135-1145. PubMed ID: 36049565 [TBL] [Abstract][Full Text] [Related]
13. Perylene-functionalized graphene sheets modified with chitosan for voltammetric discrimination of tryptophan enantiomers. Yang X; Niu X; Mo Z; Guo R; Liu N; Zhao P; Liu Z Mikrochim Acta; 2019 May; 186(6):333. PubMed ID: 31065866 [TBL] [Abstract][Full Text] [Related]
14. Rapid recognition and determination of tryptophan by carbon nanotubes and molecularly imprinted polymer-modified glassy carbon electrode. Wu Y; Deng P; Tian Y; Ding Z; Li G; Liu J; Zuberi Z; He Q Bioelectrochemistry; 2020 Feb; 131():107393. PubMed ID: 31698180 [TBL] [Abstract][Full Text] [Related]
15. Temperature-sensitive electrochemical recognition of tryptophan enantiomers based on β-cyclodextrin self-assembled on poly(L-glutamic acid). Tao Y; Dai J; Kong Y; Sha Y Anal Chem; 2014 Mar; 86(5):2633-9. PubMed ID: 24484527 [TBL] [Abstract][Full Text] [Related]
16. Chiral recognition of tryptophan enantiomer based on the electrode modified by polyaniline adsorption bovine serum albumin complex. Yao W; Li S; Xie L; Jiang Y Chirality; 2023 Feb; 35(2):129-144. PubMed ID: 36564104 [TBL] [Abstract][Full Text] [Related]
17. A Self-Standing Binder-Free Biomimetic Cathode Based on LMO/CNT Enhanced with Graphene and PANI for Aqueous Rechargeable Batteries. Bubulinca C; Sapurina I; Kazantseva NE; Pechancova V; Saha P Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163385 [TBL] [Abstract][Full Text] [Related]
18. Enhancing performance of uricase using multiwalled carbon nanotube doped polyaniline. Arora K; Choudhary M; Malhotra BD Appl Biochem Biotechnol; 2014 Oct; 174(3):1174-87. PubMed ID: 24928549 [TBL] [Abstract][Full Text] [Related]
19. Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors. Liu M; Miao YE; Zhang C; Tjiu WW; Yang Z; Peng H; Liu T Nanoscale; 2013 Aug; 5(16):7312-20. PubMed ID: 23821299 [TBL] [Abstract][Full Text] [Related]
20. Facile fabrication of 17β-estradiol electrochemical sensor using polyaniline/carbon dot-coated glassy carbon electrode with synergistically enhanced electrochemical stability. Supchocksoonthorn P; Alvior Sinoy MC; de Luna MDG; Paoprasert P Talanta; 2021 Dec; 235():122782. PubMed ID: 34517640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]