These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 33675347)

  • 1. Antenatal iron supplementation, FGF23, and bone metabolism in Kenyan women and their offspring: secondary analysis of a randomized controlled trial.
    Braithwaite VS; Mwangi MN; Jones KS; Demir AY; Prentice A; Prentice AM; Andang'o PEA; Verhoef H
    Am J Clin Nutr; 2021 May; 113(5):1104-1114. PubMed ID: 33675347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Daily Antenatal Iron Supplementation on Plasmodium Infection in Kenyan Women: A Randomized Clinical Trial.
    Mwangi MN; Roth JM; Smit MR; Trijsburg L; Mwangi AM; Demir AY; Wielders JP; Mens PF; Verweij JJ; Cox SE; Prentice AM; Brouwer ID; Savelkoul HF; Andang'o PE; Verhoef H
    JAMA; 2015 Sep; 314(10):1009-20. PubMed ID: 26348751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oral Versus Intravenous Iron Supplementation for the Treatment of Iron Deficiency Anemia in Patients on Maintenance Hemodialysis-Effect on Fibroblast Growth Factor-23 Metabolism.
    Fukao W; Hasuike Y; Yamakawa T; Toyoda K; Aichi M; Masachika S; Kantou M; Takahishi SI; Iwasaki T; Yahiro M; Nanami M; Nagasawa Y; Kuragano T; Nakanishi T
    J Ren Nutr; 2018 Jul; 28(4):270-277. PubMed ID: 29703633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling fibroblast growth factor 23 production and cleavage: iron deficiency, rickets, and kidney disease.
    Wolf M; White KE
    Curr Opin Nephrol Hypertens; 2014 Jul; 23(4):411-9. PubMed ID: 24867675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of maternal iron deficiency on infant fibroblast growth factor-23 and mineral metabolism.
    Braithwaite VS; Prentice A; Darboe MK; Prentice AM; Moore SE
    Bone; 2016 Feb; 83():1-8. PubMed ID: 26453792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neonatal iron deficiency causes abnormal phosphate metabolism by elevating FGF23 in normal and ADHR mice.
    Clinkenbeard EL; Farrow EG; Summers LJ; Cass TA; Roberts JL; Bayt CA; Lahm T; Albrecht M; Allen MR; Peacock M; White KE
    J Bone Miner Res; 2014 Feb; 29(2):361-9. PubMed ID: 23873717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oral iron supplementation with sodium ferrous citrate reduces the serum intact and c-terminal fibroblast growth factor 23 levels of maintenance haemodialysis patients.
    Yamashita K; Mizuiri S; Nishizawa Y; Kenichiro S; Doi S; Masaki T
    Nephrology (Carlton); 2017 Dec; 22(12):947-953. PubMed ID: 27558654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prenatal Iron Supplementation Reduces Maternal Anemia, Iron Deficiency, and Iron Deficiency Anemia in a Randomized Clinical Trial in Rural China, but Iron Deficiency Remains Widespread in Mothers and Neonates.
    Zhao G; Xu G; Zhou M; Jiang Y; Richards B; Clark KM; Kaciroti N; Georgieff MK; Zhang Z; Tardif T; Li M; Lozoff B
    J Nutr; 2015 Aug; 145(8):1916-23. PubMed ID: 26063068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oral Iron Replacement Normalizes Fibroblast Growth Factor 23 in Iron-Deficient Patients With Autosomal Dominant Hypophosphatemic Rickets.
    Imel EA; Liu Z; Coffman M; Acton D; Mehta R; Econs MJ
    J Bone Miner Res; 2020 Feb; 35(2):231-238. PubMed ID: 31652009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maternal gestational vitamin D supplementation and offspring bone health (MAVIDOS): a multicentre, double-blind, randomised placebo-controlled trial.
    Cooper C; Harvey NC; Bishop NJ; Kennedy S; Papageorghiou AT; Schoenmakers I; Fraser R; Gandhi SV; Carr A; D'Angelo S; Crozier SR; Moon RJ; Arden NK; Dennison EM; Godfrey KM; Inskip HM; Prentice A; Mughal MZ; Eastell R; Reid DM; Javaid MK;
    Lancet Diabetes Endocrinol; 2016 May; 4(5):393-402. PubMed ID: 26944421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron modifies plasma FGF23 differently in autosomal dominant hypophosphatemic rickets and healthy humans.
    Imel EA; Peacock M; Gray AK; Padgett LR; Hui SL; Econs MJ
    J Clin Endocrinol Metab; 2011 Nov; 96(11):3541-9. PubMed ID: 21880793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excessive Osteocytic Fgf23 Secretion Contributes to Pyrophosphate Accumulation and Mineralization Defect in Hyp Mice.
    Murali SK; Andrukhova O; Clinkenbeard EL; White KE; Erben RG
    PLoS Biol; 2016 Apr; 14(4):e1002427. PubMed ID: 27035636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations in regulators of the renal-bone axis, inflammation and iron status in older people with early renal impairment and the effect of vitamin D supplementation.
    Christodoulou M; Aspray TJ; Piec I; Fraser WD; Schoenmakers I;
    Age Ageing; 2024 May; 53(5):. PubMed ID: 38770543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FGF23 at the crossroads of phosphate, iron economy and erythropoiesis.
    Edmonston D; Wolf M
    Nat Rev Nephrol; 2020 Jan; 16(1):7-19. PubMed ID: 31519999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Bone and Calcium Research Update 2015. Novel treatment for FGF23-related hypophosphatemic diseases].
    Fukumoto S
    Clin Calcium; 2015 Jan; 25(1):37-44. PubMed ID: 25530521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of vitamin D supplementation on FGF23: a randomized-controlled trial.
    Trummer C; Schwetz V; Pandis M; Grübler MR; Verheyen N; Gaksch M; Zittermann A; März W; Aberer F; Steinkellner J; Friedl C; Brandenburg V; Voelkl J; Alesutan I; Obermayer-Pietsch B; Pieber TR; Tomaschitz A; Pilz S
    Eur J Nutr; 2019 Mar; 58(2):697-703. PubMed ID: 29602956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice.
    Farrow EG; Yu X; Summers LJ; Davis SI; Fleet JC; Allen MR; Robling AG; Stayrook KR; Jideonwo V; Magers MJ; Garringer HJ; Vidal R; Chan RJ; Goodwin CB; Hui SL; Peacock M; White KE
    Proc Natl Acad Sci U S A; 2011 Nov; 108(46):E1146-55. PubMed ID: 22006328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of dietary iron intake and chronic kidney disease on fibroblast growth factor 23 metabolism in wild-type and hepcidin knockout mice.
    Hanudel MR; Chua K; Rappaport M; Gabayan V; Valore E; Goltzman D; Ganz T; Nemeth E; Salusky IB
    Am J Physiol Renal Physiol; 2016 Dec; 311(6):F1369-F1377. PubMed ID: 27733366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of 16-weeks vitamin D replacement on calcium-phosphate homeostasis in overweight and obese adults.
    Mesinovic J; Mousa A; Wilson K; Scragg R; Plebanski M; de Courten M; Scott D; Naderpoor N; de Courten B
    J Steroid Biochem Mol Biol; 2019 Feb; 186():169-175. PubMed ID: 30367939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.