BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 33675762)

  • 1. Image-derived modeling of nucleus strain amplification associated with chromatin heterogeneity.
    Reynolds N; McEvoy E; Ghosh S; Panadero PĂ©rez JA; Neu CP; McGarry P
    Biophys J; 2021 Apr; 120(8):1323-1332. PubMed ID: 33675762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Encapsulation of chondrocytes in high-stiffness agarose microenvironments for in vitro modeling of osteoarthritis mechanotransduction.
    Jutila AA; Zignego DL; Schell WJ; June RK
    Ann Biomed Eng; 2015 May; 43(5):1132-44. PubMed ID: 25395215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational investigation of in situ chondrocyte deformation and actin cytoskeleton remodelling under physiological loading.
    Dowling EP; Ronan W; McGarry JP
    Acta Biomater; 2013 Apr; 9(4):5943-55. PubMed ID: 23271042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chondrocyte viability is lost during high-rate impact loading by transfer of amplified strain, but not stress, to pericellular and cellular regions.
    Argote PF; Kaplan JT; Poon A; Xu X; Cai L; Emery NC; Pierce DM; Neu CP
    Osteoarthritis Cartilage; 2019 Dec; 27(12):1822-1830. PubMed ID: 31526876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intranuclear strain in living cells subjected to substrate stretching: A combined experimental and computational study.
    Tsukamoto S; Asakawa T; Kimura S; Takesue N; Mofrad MRK; Sakamoto N
    J Biomech; 2021 Apr; 119():110292. PubMed ID: 33667883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ mechanical properties of the chondrocyte cytoplasm and nucleus.
    Ofek G; Natoli RM; Athanasiou KA
    J Biomech; 2009 May; 42(7):873-7. PubMed ID: 19261283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytoskeletal prestress regulates nuclear shape and stiffness in cardiac myocytes.
    Lee H; Adams WJ; Alford PW; McCain ML; Feinberg AW; Sheehy SP; Goss JA; Parker KK
    Exp Biol Med (Maywood); 2015 Nov; 240(11):1543-54. PubMed ID: 25908635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin and lamin A determine two different mechanical response regimes of the cell nucleus.
    Stephens AD; Banigan EJ; Adam SA; Goldman RD; Marko JF
    Mol Biol Cell; 2017 Jul; 28(14):1984-1996. PubMed ID: 28057760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The deformation behavior and viscoelastic properties of chondrocytes in articular cartilage.
    Guilak F
    Biorheology; 2000; 37(1-2):27-44. PubMed ID: 10912176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite-element analysis of the adhesion-cytoskeleton-nucleus mechanotransduction pathway during endothelial cell rounding: axisymmetric model.
    Jean RP; Chen CS; Spector AA
    J Biomech Eng; 2005 Aug; 127(4):594-600. PubMed ID: 16121529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Image-Based Elastography of Heterochromatin and Euchromatin Domains in the Deforming Cell Nucleus.
    Ghosh S; Cuevas VC; Seelbinder B; Neu CP
    Small; 2021 Feb; 17(5):e2006109. PubMed ID: 33448065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The deformation behavior and mechanical properties of chondrocytes in articular cartilage.
    Guilak F; Jones WR; Ting-Beall HP; Lee GM
    Osteoarthritis Cartilage; 1999 Jan; 7(1):59-70. PubMed ID: 10367015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dynamic mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions under cyclic compressive loading.
    Kim E; Guilak F; Haider MA
    J Biomech Eng; 2008 Dec; 130(6):061009. PubMed ID: 19045538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-situ measurements of chondrocyte deformation under transient loading.
    Chahine NO; Hung CT; Ateshian GA
    Eur Cell Mater; 2007 May; 13():100-11; discussion 111. PubMed ID: 17538899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanical microenvironment of high concentration agarose for applying deformation to primary chondrocytes.
    Zignego DL; Jutila AA; Gelbke MK; Gannon DM; June RK
    J Biomech; 2014 Jun; 47(9):2143-8. PubMed ID: 24275437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanics of single chondrocytes under direct shear.
    Ofek G; Dowling EP; Raphael RM; McGarry JP; Athanasiou KA
    Biomech Model Mechanobiol; 2010 Apr; 9(2):153-62. PubMed ID: 19644718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volume Adaptation Controls Stem Cell Mechanotransduction.
    Major LG; Holle AW; Young JL; Hepburn MS; Jeong K; Chin IL; Sanderson RW; Jeong JH; Aman ZM; Kennedy BF; Hwang Y; Han DW; Park HW; Guan KL; Spatz JP; Choi YS
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45520-45530. PubMed ID: 31714734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An axisymmetric boundary element model for determination of articular cartilage pericellular matrix properties in situ via inverse analysis of chondron deformation.
    Kim E; Guilak F; Haider MA
    J Biomech Eng; 2010 Mar; 132(3):031011. PubMed ID: 20459199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial distribution of lamin A/C determines nuclear stiffness and stress-mediated deformation.
    Srivastava LK; Ju Z; Ghagre A; Ehrlicher AJ
    J Cell Sci; 2021 May; 134(10):. PubMed ID: 34028539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular mechanosensitivity to substrate stiffness decreases with increasing dissimilarity to cell stiffness.
    Abdalrahman T; Dubuis L; Green J; Davies N; Franz T
    Biomech Model Mechanobiol; 2017 Dec; 16(6):2063-2075. PubMed ID: 28733924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.