BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33675778)

  • 1. A smartphone based method for mouse fundus imaging.
    Peng M; Park B; Harikrishnan H; Jahan SN; Dai J; Rayana NP; Sugali CK; Sharma TP; Imanishi S; Imanishi Y; Corson TW; Mao W
    Exp Eye Res; 2021 May; 206():108530. PubMed ID: 33675778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unconventional techniques of fundus imaging: A review.
    Shanmugam MP; Mishra DK; Rajesh R; Madhukumar R
    Indian J Ophthalmol; 2015 Jul; 63(7):582-5. PubMed ID: 26458475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinal fundus imaging in mouse models of retinal diseases.
    Alex AF; Heiduschka P; Eter N
    Methods Mol Biol; 2013; 935():41-67. PubMed ID: 23150359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-wide-field fluorescein angiography of the ocular fundus.
    Manivannan A; Plskova J; Farrow A; Mckay S; Sharp PF; Forrester JV
    Am J Ophthalmol; 2005 Sep; 140(3):525-7. PubMed ID: 16139004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence Lifetime Imaging Ophthalmoscopy: A New Era of Autofluorescence Imaging of the Human Retina.
    Bernstein PS; Sauer L
    Retina; 2019 May; 39(5):817-819. PubMed ID: 30829990
    [No Abstract]   [Full Text] [Related]  

  • 6. Trash to treasure Retcam.
    Chandrakanth P; Ravichandran R; Nischal NG; Subhashini M
    Indian J Ophthalmol; 2019 Apr; 67(4):541-544. PubMed ID: 30900590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. WIDE-FIELD SMARTPHONE FUNDUS VIDEO CAMERA BASED ON MINIATURIZED INDIRECT OPHTHALMOSCOPY.
    Toslak D; Ayata A; Liu C; Erol MK; Yao X
    Retina; 2018 Feb; 38(2):438-441. PubMed ID: 29095361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oral fluorescein angiography with the confocal scanning laser ophthalmoscope.
    Garcia CR; Rivero ME; Bartsch DU; Ishiko S; Takamiya A; Fukui K; Hirokawa H; Clark T; Yoshida A; Freeman WR
    Ophthalmology; 1999 Jun; 106(6):1114-8. PubMed ID: 10366079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring Retinal Vessel Diameter from Mouse Fluorescent Angiography Images.
    García-Llorca A; Reynisson H; Eysteinsson T
    J Vis Exp; 2023 May; (195):. PubMed ID: 37318246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smartphone Fundus Photography.
    Nazari Khanamiri H; Nakatsuka A; El-Annan J
    J Vis Exp; 2017 Jul; (125):. PubMed ID: 28715396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multicolor imaging: Current clinical applications.
    Roy R; Chattree S; Kala U; Majumdar B; Desai J; Bhattacharya S; Sen A; Goel S; Thomas NR; Chowdhury M; Das K; Nigam E; Das D; Saurabh K
    Surv Ophthalmol; 2024; 69(3):378-402. PubMed ID: 38122907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinal Vessel Caliber Measurement Using MultiColor and Infrared Confocal Scanning Laser Ophthalmoscopy Fundus Images.
    Sarwar S; Hanout M; Sadiq MA; Soliman MK; Agarwal A; Do DV; Nguyen QD; Sepah YJ
    Int Ophthalmol Clin; 2016; 56(4):67-83. PubMed ID: 27575759
    [No Abstract]   [Full Text] [Related]  

  • 13. Comparison of fundus autofluorescence images acquired by the confocal scanning laser ophthalmoscope (488 nm excitation) and the modified Topcon fundus camera (580 nm excitation).
    Deli A; Moetteli L; Ambresin A; Mantel I
    Int Ophthalmol; 2013 Dec; 33(6):635-43. PubMed ID: 23468053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Canine and feline fundus photography and videography using a nonpatented 3D printed lens adapter for a smartphone.
    Espinheira Gomes F; Ledbetter E
    Vet Ophthalmol; 2019 Jan; 22(1):88-92. PubMed ID: 29749697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of fundus autofluorescence and widefield angiography in clinical practice.
    Banda HK; Shah GK; Blinder KJ
    Can J Ophthalmol; 2019 Feb; 54(1):11-19. PubMed ID: 30851762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical validation of a smartphone-based handheld fundus camera for the evaluation of optic nerve head.
    Titoneli CC; Filho MS; Lencione D; Vieira FP; Stuchi JA; Paula JS
    Arq Bras Oftalmol; 2021; 84(6):531-537. PubMed ID: 34320110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quality and Diagnostic Utility of Mydriatic Smartphone Photography: The Smartphone Ophthalmoscopy Reliability Trial.
    Adam MK; Brady CJ; Flowers AM; Juhn AT; Hsu J; Garg SJ; Murchison AP; Spirn MJ
    Ophthalmic Surg Lasers Imaging Retina; 2015 Jun; 46(6):631-7. PubMed ID: 26114843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Technical Options of Documentation of the Anterior Segment and the eye Fundus Findings within Mission].
    Furdová A; Krčméry V; Horkovičová K; Furdová A; Sláviková T
    Cesk Slov Oftalmol; 2016; 72(3):86-90. PubMed ID: 27658976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using a smartphone-based digital fundus camera for screening of retinal and optic nerve diseases in veterinary medicine: A preliminary investigation.
    Sebbag L; Ofri R; Arad D; Handel KW; Pe'er O
    Vet Rec; 2024 May; 194(9):e4088. PubMed ID: 38637964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of fundus autofluorescence between fundus camera and confocal scanning laser ophthalmoscope-based systems.
    Park SP; Siringo FS; Pensec N; Hong IH; Sparrow J; Barile G; Tsang SH; Chang S
    Ophthalmic Surg Lasers Imaging Retina; 2013 Nov; 44(6):536-43. PubMed ID: 24221461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.