These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 33676662)

  • 1. Ionic liquid and magnetic multiwalled carbon nanotubes for extraction of N-methylcarbamate pesticides from water samples prior their determination by capillary electrophoresis.
    Ben Attig J; Latrous L; Zougagh M; Ríos Á
    Talanta; 2021 May; 226():122106. PubMed ID: 33676662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic nanocellulose hybrid nanoparticles and ionic liquid for extraction of neonicotinoid insecticides from milk samples prior to determination by liquid chromatography-mass spectrometry.
    Adelantado C; Ríos Á; Zougagh M
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Sep; 35(9):1755-1766. PubMed ID: 29995588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Green aspects, developments and perspectives of liquid phase microextraction techniques.
    Spietelun A; Marcinkowski Ł; de la Guardia M; Namieśnik J
    Talanta; 2014 Feb; 119():34-45. PubMed ID: 24401382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of ultraviolet filters in environmental water samples by temperature-controlled ionic liquid dispersive liquid-phase microextraction.
    Zhang Y; Lee HK
    J Chromatogr A; 2013 Jan; 1271(1):56-61. PubMed ID: 23237715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preconcentration of organochlorine pesticides in aqueous samples by dispersive liquid-liquid microextraction based on solidification of floating organic drop after SPE with multiwalled carbon nanotubes.
    Mirzaei M; Rakh M
    J Sep Sci; 2014 Jan; 37(1-2):114-9. PubMed ID: 24288158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of magnetite/multiwalled carbon nanotubes/metal-organic framework composite for dispersive magnetic micro solid phase extraction of parabens and phthalate esters from water samples and various types of cream for their determination with liquid chromatography.
    Jalilian N; Ebrahimzadeh H; Asgharinezhad AA
    J Chromatogr A; 2019 Dec; 1608():460426. PubMed ID: 31416622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of magnetic dispersive solid phase extraction using toner powder as an efficient and economic sorbent in combination with dispersive liquid-liquid microextraction for extraction of some widely used pesticides in fruit juices.
    Farajzadeh MA; Mohebbi A
    J Chromatogr A; 2018 Jan; 1532():10-19. PubMed ID: 29174132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly stable magnetic multiwalled carbon nanotube composites for solid-phase extraction of linear alkylbenzene sulfonates in environmental water samples prior to high-performance liquid chromatography analysis.
    Chen B; Wang S; Zhang Q; Huang Y
    Analyst; 2012 Mar; 137(5):1232-40. PubMed ID: 22262090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination of dispersive solid phase extraction with solidification organic drop-dispersive liquid-liquid microextraction based on deep eutectic solvent for extraction of organophosphorous pesticides from edible oil samples.
    Zahiri E; Khandaghi J; Farajzadeh MA; Afshar Mogaddam MR
    J Chromatogr A; 2020 Sep; 1627():461390. PubMed ID: 32823096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination of dispersive solid phase extraction and deep eutectic solvent-based air-assisted liquid-liquid microextraction followed by gas chromatography-mass spectrometry as an efficient analytical method for the quantification of some tricyclic antidepressant drugs in biological fluids.
    Mohebbi A; Yaripour S; Farajzadeh MA; Afshar Mogaddam MR
    J Chromatogr A; 2018 Oct; 1571():84-93. PubMed ID: 30119972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of multiwalled carbon nanotubes for the preconcentration and determination of organochlorine pesticides in water samples by gas chromatography with mass spectrometry.
    Taghani A; Goudarzi N; Bagherian G
    J Sep Sci; 2016 Nov; 39(21):4219-4226. PubMed ID: 27604141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasound-assisted temperature-controlled ionic liquid dispersive liquid-phase microextraction combined with reversed-phase liquid chromatography for determination of organophosphorus pesticides in water samples.
    Albishri HM; Aldawsari NA; El-Hady DA
    Electrophoresis; 2016 Oct; 37(19):2462-2469. PubMed ID: 27338127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of a magnetic sorbent and its application in extraction of different pesticides from water, fruit, and vegetable samples prior to their determination by gas chromatography-tandem mass spectrometry.
    Yadeghari A; Farajzadeh MA
    J Chromatogr A; 2021 Jan; 1635():461718. PubMed ID: 33229005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison between magnetic and non magnetic multi-walled carbon nanotubes-dispersive solid-phase extraction combined with ultra-high performance liquid chromatography for the determination of sulfonamide antibiotics in water samples.
    Herrera-Herrera AV; Hernández-Borges J; Afonso MM; Palenzuela JA; Rodríguez-Delgado MÁ
    Talanta; 2013 Nov; 116():695-703. PubMed ID: 24148463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of five polar herbicides in water samples by ionic liquid dispersive liquid-phase microextraction.
    Wang S; Ren L; Liu C; Ge J; Liu F
    Anal Bioanal Chem; 2010 Aug; 397(7):3089-95. PubMed ID: 20523972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic solid-phase extraction based on magnetic amino modified multiwalled carbon nanotubes for the fast determination of seven pesticide residues in water samples.
    Dong J; Feng Z; Kang S; An M; Wu G
    Anal Methods; 2020 Jun; 12(21):2747-2756. PubMed ID: 32930306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trace determination of organophosphorus pesticides in environmental samples by temperature-controlled ionic liquid dispersive liquid-phase microextraction.
    Zhou Q; Bai H; Xie G; Xiao J
    J Chromatogr A; 2008 Apr; 1188(2):148-53. PubMed ID: 18346747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrapreconcentration and determination of organophosphorus pesticides in water by solid-phase extraction combined with dispersive liquid-liquid microextraction and high-performance liquid chromatography.
    Chen J; Zhou G; Deng Y; Cheng H; Shen J; Gao Y; Peng G
    J Sep Sci; 2016 Jan; 39(2):272-8. PubMed ID: 26553707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a new extraction method based on counter current salting-out homogenous liquid-liquid extraction followed by dispersive liquid-liquid microextraction: Application for the extraction and preconcentration of widely used pesticides from fruit juices.
    Farajzadeh MA; Feriduni B; Mogaddam MR
    Talanta; 2016 Jan; 146():772-9. PubMed ID: 26695329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination of magnetic dispersive micro solid-phase extraction and supramolecular solvent-based microextraction followed by high-performance liquid chromatography for determination of trace amounts of cholesterol-lowering drugs in complicated matrices.
    Arghavani-Beydokhti S; Rajabi M; Asghari A
    Anal Bioanal Chem; 2017 Jul; 409(18):4395-4407. PubMed ID: 28547184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.