These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33676740)

  • 1. Iterative characteristic ridge extraction for bearing fault detection under variable rotational speed conditions.
    Li Y; Yang Y; Chen Y; Chen Z
    ISA Trans; 2022 Jan; 119():172-183. PubMed ID: 33676740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bearing multi-fault diagnosis with iterative generalized demodulation guided by enhanced rotational frequency matching under time-varying speed conditions.
    Zhao D; Li J; Cheng W; Wen W
    ISA Trans; 2023 Feb; 133():518-528. PubMed ID: 35843740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tacholess envelope order analysis and its application to fault detection of rolling element bearings with varying speeds.
    Zhao M; Lin J; Xu X; Lei Y
    Sensors (Basel); 2013 Aug; 13(8):10856-75. PubMed ID: 23959244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple time-frequency curve extraction Matlab code and its application to automatic bearing fault diagnosis under time-varying speed conditions.
    Huang H; Baddour N; Liang M
    MethodsX; 2019; 6():1415-1432. PubMed ID: 31245281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Method for Bearing Fault Diagnosis under Variable Speed Based on Envelope Spectrum Fault Characteristic Frequency Band Identification.
    Pei D; Yue J; Jiao J
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Bearing Fault Diagnosis Method Based on PAVME and MEDE.
    Yan X; Xu Y; She D; Zhang W
    Entropy (Basel); 2021 Oct; 23(11):. PubMed ID: 34828100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incipient Fault Detection for Rolling Element Bearings under Varying Speed Conditions.
    Xue L; Li N; Lei Y; Li N
    Materials (Basel); 2017 Jun; 10(6):. PubMed ID: 28773035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Hybrid Technique Combining Improved Cepstrum Pre-Whitening and High-Pass Filtering for Effective Bearing Fault Diagnosis Using Vibration Data.
    Kiakojouri A; Lu Z; Mirring P; Powrie H; Wang L
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Fault Detection Method for Rolling Bearings Based on Non-Stationary Vibration Signature Analysis.
    Zhen D; Guo J; Xu Y; Zhang H; Gu F
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31527448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sparse and low-rank decomposition of the time-frequency representation for bearing fault diagnosis under variable speed conditions.
    Wang R; Fang H; Yu L; Yu L; Chen J
    ISA Trans; 2022 Sep; 128(Pt B):579-598. PubMed ID: 34952690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Demodulation Analysis Technique for Bearing Fault Diagnosis via Energy Separation and Local Low-Rank Matrix Approximation.
    Lv Y; Ge M; Zhang Y; Yi C; Ma Y
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31480314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonstationary feature extraction based on stochastic resonance and its application in rolling bearing fault diagnosis under strong noise background.
    Wang Z; Yang J; Guo Y; Gong T; Shan Z
    Rev Sci Instrum; 2023 Jan; 94(1):015110. PubMed ID: 36725570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rolling element bearing defect detection using the generalized synchrosqueezing transform guided by time-frequency ridge enhancement.
    Li C; Sanchez V; Zurita G; Cerrada Lozada M; Cabrera D
    ISA Trans; 2016 Jan; 60():274-284. PubMed ID: 26542359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A feature extraction method based on information theory for fault diagnosis of reciprocating machinery.
    Wang H; Chen P
    Sensors (Basel); 2009; 9(4):2415-36. PubMed ID: 22574021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bearing fault diagnosis under time-varying rotational speed via the fault characteristic order (FCO) index based demodulation and the stepwise resampling in the fault phase angle (FPA) domain.
    Wang T; Chu F
    ISA Trans; 2019 Nov; 94():391-400. PubMed ID: 31053361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Fault Feature Recognition Method for Time-Varying Signals and Its Application to Planetary Gearbox Fault Diagnosis under Variable Speed Conditions.
    Lv Y; Pan B; Yi C; Ma Y
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31319628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibration characterization of rolling bearings with compound fault features under multiple interference factors.
    Wang Y; Yang H; Zhao S; Fan Y; Dong R
    PLoS One; 2024; 19(2):e0297935. PubMed ID: 38346051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of a Sensitive and Speed Invariant Gearbox Fault Diagnosis Model Using an Incorporated Utilizing Adaptive Noise Control and a Stacked Sparse Autoencoder-Based Deep Neural Network.
    Nguyen CD; Prosvirin AE; Kim CH; Kim JM
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-fault detection of rolling element bearings under harsh working condition using IMF-based adaptive envelope order analysis.
    Zhao M; Lin J; Xu X; Li X
    Sensors (Basel); 2014 Oct; 14(11):20320-46. PubMed ID: 25353982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of higher order spectral features and support vector machines for bearing faults classification.
    Saidi L; Ben Ali J; Fnaiech F
    ISA Trans; 2015 Jan; 54():193-206. PubMed ID: 25282095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.