BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 33676925)

  • 1. Simplicity is the Ultimate Sophistication-Crosstalk of Post-translational Modifications on the RNA Polymerase II.
    Venkat Ramani MK; Yang W; Irani S; Zhang Y
    J Mol Biol; 2021 Jul; 433(14):166912. PubMed ID: 33676925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The RNA polymerase II CTD coordinates transcription and RNA processing.
    Hsin JP; Manley JL
    Genes Dev; 2012 Oct; 26(19):2119-37. PubMed ID: 23028141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removing quote marks from the RNA polymerase II CTD 'code'.
    Dieci G
    Biosystems; 2021 Sep; 207():104468. PubMed ID: 34216714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription by RNA polymerase II and the CTD-chromatin crosstalk.
    Singh N; Asalam M; Ansari MO; Gerasimova NS; Studitsky VM; Akhtar MS
    Biochem Biophys Res Commun; 2022 Apr; 599():81-86. PubMed ID: 35176629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phospho-site mutants of the RNA Polymerase II C-terminal domain alter subtelomeric gene expression and chromatin modification state in fission yeast.
    Inada M; Nichols RJ; Parsa JY; Homer CM; Benn RA; Hoxie RS; Madhani HD; Shuman S; Schwer B; Pleiss JA
    Nucleic Acids Res; 2016 Nov; 44(19):9180-9189. PubMed ID: 27402158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cracking the RNA polymerase II CTD code.
    Egloff S; Murphy S
    Trends Genet; 2008 Jun; 24(6):280-8. PubMed ID: 18457900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomics studies of the interactome of RNA polymerase II C-terminal repeated domain.
    Pineda G; Shen Z; de Albuquerque CP; Reynoso E; Chen J; Tu CC; Tang W; Briggs S; Zhou H; Wang JY
    BMC Res Notes; 2015 Oct; 8():616. PubMed ID: 26515650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crosstalk between RNA Pol II C-Terminal Domain Acetylation and Phosphorylation via RPRD Proteins.
    Ali I; Ruiz DG; Ni Z; Johnson JR; Zhang H; Li PC; Khalid MM; Conrad RJ; Guo X; Min J; Greenblatt J; Jacobson M; Krogan NJ; Ott M
    Mol Cell; 2019 Jun; 74(6):1164-1174.e4. PubMed ID: 31054975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain.
    Harlen KM; Churchman LS
    Nat Rev Mol Cell Biol; 2017 Apr; 18(4):263-273. PubMed ID: 28248323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A combinatorial view of old and new RNA polymerase II modifications.
    Lyons DE; McMahon S; Ott M
    Transcription; 2020 Apr; 11(2):66-82. PubMed ID: 32401151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Motifs for CTD Kinase Specificity on RNA Polymerase II during Eukaryotic Transcription.
    Ramani MKV; Escobar EE; Irani S; Mayfield JE; Moreno RY; Butalewicz JP; Cotham VC; Wu H; Tadros M; Brodbelt JS; Zhang YJ
    ACS Chem Biol; 2020 Aug; 15(8):2259-2272. PubMed ID: 32568517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-transcriptional splicing and the CTD code.
    Custódio N; Carmo-Fonseca M
    Crit Rev Biochem Mol Biol; 2016 Sep; 51(5):395-411. PubMed ID: 27622638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA Pol II Dynamics Modulate Co-transcriptional Chromatin Modification, CTD Phosphorylation, and Transcriptional Direction.
    Fong N; Saldi T; Sheridan RM; Cortazar MA; Bentley DL
    Mol Cell; 2017 May; 66(4):546-557.e3. PubMed ID: 28506463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-talk of phosphorylation and prolyl isomerization of the C-terminal domain of RNA Polymerase II.
    Yogesha SD; Mayfield JE; Zhang Y
    Molecules; 2014 Jan; 19(2):1481-511. PubMed ID: 24473209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The last CTD repeat of the mammalian RNA polymerase II large subunit is important for its stability.
    Chapman RD; Palancade B; Lang A; Bensaude O; Eick D
    Nucleic Acids Res; 2004; 32(1):35-44. PubMed ID: 14704341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural determinants for accurate dephosphorylation of RNA polymerase II by its cognate C-terminal domain (CTD) phosphatase during eukaryotic transcription.
    Irani S; Sipe SN; Yang W; Burkholder NT; Lin B; Sim K; Matthews WL; Brodbelt JS; Zhang Y
    J Biol Chem; 2019 May; 294(21):8592-8605. PubMed ID: 30971428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methylation of RNA polymerase II non-consensus Lysine residues marks early transcription in mammalian cells.
    Dias JD; Rito T; Torlai Triglia E; Kukalev A; Ferrai C; Chotalia M; Brookes E; Kimura H; Pombo A
    Elife; 2015 Dec; 4():. PubMed ID: 26687004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separable functions of the fission yeast Spt5 carboxyl-terminal domain (CTD) in capping enzyme binding and transcription elongation overlap with those of the RNA polymerase II CTD.
    Schneider S; Pei Y; Shuman S; Schwer B
    Mol Cell Biol; 2010 May; 30(10):2353-64. PubMed ID: 20231361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging roles for RNA polymerase II CTD in Arabidopsis.
    Hajheidari M; Koncz C; Eick D
    Trends Plant Sci; 2013 Nov; 18(11):633-43. PubMed ID: 23910452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modifications of RNA polymerase II CTD: Connections to the histone code and cellular function.
    Srivastava R; Ahn SH
    Biotechnol Adv; 2015 Nov; 33(6 Pt 1):856-72. PubMed ID: 26241863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.