These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 33676927)

  • 1. Passive Diffusion of Ciprofloxacin and its Metalloantibiotic: A Computational and Experimental study.
    Sousa CF; Coimbra JTS; Ferreira M; Pereira-Leite C; Reis S; Ramos MJ; Fernandes PA; Gameiro P
    J Mol Biol; 2021 Apr; 433(9):166911. PubMed ID: 33676927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the permeation of fluoroquinolone metalloantibiotics across outer membrane porins by combining molecular dynamics simulations and a porin-mimetic in vitro model.
    Sousa CF; Coimbra JTS; Richter R; Morais-Cabral JH; Ramos MJ; Lehr CM; Fernandes PA; Gameiro P
    Biochim Biophys Acta Biomembr; 2022 Mar; 1864(3):183838. PubMed ID: 34896074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ciprofloxacin metalloantibiotic: an effective antibiotic with an influx route strongly dependent on lipid interaction?
    Ferreira M; Gameiro P
    J Membr Biol; 2015 Feb; 248(1):125-36. PubMed ID: 25378125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism for translocation of fluoroquinolones across lipid membranes.
    Cramariuc O; Rog T; Javanainen M; Monticelli L; Polishchuk AV; Vattulainen I
    Biochim Biophys Acta; 2012 Nov; 1818(11):2563-71. PubMed ID: 22664062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights into the translocation route of enrofloxacin and its metalloantibiotics.
    Ribeiro C; Lopes SC; Gameiro P
    J Membr Biol; 2011 Jun; 241(3):117-25. PubMed ID: 21584680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Ciprofloxacin Permeation Pathways across the Porin OmpC Using Metadynamics and a String Method.
    Prajapati JD; Fernández Solano CJ; Winterhalter M; Kleinekathöfer U
    J Chem Theory Comput; 2017 Sep; 13(9):4553-4566. PubMed ID: 28816443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of bacterial cell membrane dynamics and morphology upon exposure to sub inhibitory concentrations of ciprofloxacin.
    Ponmalar II; Swain J; Basu JK
    Biochim Biophys Acta Biomembr; 2022 Aug; 1864(8):183935. PubMed ID: 35461827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new approach to counteract bacteria resistance: a comparative study between moxifloxacin and a new moxifloxacin derivative in different model systems of bacterial membrane.
    Lopes SC; Ribeiro C; Gameiro P
    Chem Biol Drug Des; 2013 Feb; 81(2):265-74. PubMed ID: 23057615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Affordable Membrane Permeability Calculations: Permeation of Short-Chain Alcohols through Pure-Lipid Bilayers and a Mammalian Cell Membrane.
    Tse CH; Comer J; Sang Chu SK; Wang Y; Chipot C
    J Chem Theory Comput; 2019 May; 15(5):2913-2924. PubMed ID: 30998342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanisms of membrane targeting antibiotics.
    Epand RM; Walker C; Epand RF; Magarvey NA
    Biochim Biophys Acta; 2016 May; 1858(5):980-7. PubMed ID: 26514603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of a non-fluorescent fluoroquinolone with biological membrane models: A multi-technique approach.
    Sousa CF; Ferreira M; Abreu B; Medforth CJ; Gameiro P
    Int J Pharm; 2015 Nov; 495(2):761-70. PubMed ID: 26392242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibacterial activity of enrofloxacin and ciprofloxacin derivatives of β-octaarginine.
    Purkayastha N; Capone S; Beck AK; Seebach D; Leeds J; Thompson K; Moser HE
    Chem Biodivers; 2015 Feb; 12(2):179-93. PubMed ID: 25676502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isothermal titration calorimetry studies of the binding of a rationally designed analogue of the antimicrobial peptide gramicidin s to phospholipid bilayer membranes.
    Abraham T; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2005 Feb; 44(6):2103-12. PubMed ID: 15697236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isothermal titration calorimetry studies of the binding of the antimicrobial peptide gramicidin S to phospholipid bilayer membranes.
    Abraham T; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2005 Aug; 44(33):11279-85. PubMed ID: 16101312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subdiffusion in Membrane Permeation of Small Molecules.
    Chipot C; Comer J
    Sci Rep; 2016 Nov; 6():35913. PubMed ID: 27805049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of procaine and tetracaine in the lipid bilayer using molecular dynamics simulation.
    Jalili S; Saeedi M
    Eur Biophys J; 2017 Apr; 46(3):265-282. PubMed ID: 27557558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities.
    Zhao J; Zhao C; Liang G; Zhang M; Zheng J
    J Chem Inf Model; 2013 Dec; 53(12):3280-96. PubMed ID: 24279498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulations of outer membrane channels and their permeability.
    Pothula KR; Solano CJ; Kleinekathöfer U
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt B):1760-71. PubMed ID: 26721326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic investigations of fluoroquinolones metal ion complexes.
    Urbaniak B; Kokot ZJ
    Acta Pol Pharm; 2013; 70(4):621-9. PubMed ID: 23923386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.