These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 33677098)
1. Machine Learning Compared With Conventional Statistical Models for Predicting Myocardial Infarction Readmission and Mortality: A Systematic Review. Cho SM; Austin PC; Ross HJ; Abdel-Qadir H; Chicco D; Tomlinson G; Taheri C; Foroutan F; Lawler PR; Billia F; Gramolini A; Epelman S; Wang B; Lee DS Can J Cardiol; 2021 Aug; 37(8):1207-1214. PubMed ID: 33677098 [TBL] [Abstract][Full Text] [Related]
2. Machine learning vs. conventional statistical models for predicting heart failure readmission and mortality. Shin S; Austin PC; Ross HJ; Abdel-Qadir H; Freitas C; Tomlinson G; Chicco D; Mahendiran M; Lawler PR; Billia F; Gramolini A; Epelman S; Wang B; Lee DS ESC Heart Fail; 2021 Feb; 8(1):106-115. PubMed ID: 33205591 [TBL] [Abstract][Full Text] [Related]
3. Application of machine learning in predicting hospital readmissions: a scoping review of the literature. Huang Y; Talwar A; Chatterjee S; Aparasu RR BMC Med Res Methodol; 2021 May; 21(1):96. PubMed ID: 33952192 [TBL] [Abstract][Full Text] [Related]
4. Beyond the black stump: rapid reviews of health research issues affecting regional, rural and remote Australia. Osborne SR; Alston LV; Bolton KA; Whelan J; Reeve E; Wong Shee A; Browne J; Walker T; Versace VL; Allender S; Nichols M; Backholer K; Goodwin N; Lewis S; Dalton H; Prael G; Curtin M; Brooks R; Verdon S; Crockett J; Hodgins G; Walsh S; Lyle DM; Thompson SC; Browne LJ; Knight S; Pit SW; Jones M; Gillam MH; Leach MJ; Gonzalez-Chica DA; Muyambi K; Eshetie T; Tran K; May E; Lieschke G; Parker V; Smith A; Hayes C; Dunlop AJ; Rajappa H; White R; Oakley P; Holliday S Med J Aust; 2020 Dec; 213 Suppl 11():S3-S32.e1. PubMed ID: 33314144 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of Machine Learning Algorithms for Predicting Readmission After Acute Myocardial Infarction Using Routinely Collected Clinical Data. Gupta S; Ko DT; Azizi P; Bouadjenek MR; Koh M; Chong A; Austin PC; Sanner S Can J Cardiol; 2020 Jun; 36(6):878-885. PubMed ID: 32204950 [TBL] [Abstract][Full Text] [Related]
6. A systematic review of machine learning models for predicting outcomes of stroke with structured data. Wang W; Kiik M; Peek N; Curcin V; Marshall IJ; Rudd AG; Wang Y; Douiri A; Wolfe CD; Bray B PLoS One; 2020; 15(6):e0234722. PubMed ID: 32530947 [TBL] [Abstract][Full Text] [Related]
7. Prediction of 30-Day All-Cause Readmissions in Patients Hospitalized for Heart Failure: Comparison of Machine Learning and Other Statistical Approaches. Frizzell JD; Liang L; Schulte PJ; Yancy CW; Heidenreich PA; Hernandez AF; Bhatt DL; Fonarow GC; Laskey WK JAMA Cardiol; 2017 Feb; 2(2):204-209. PubMed ID: 27784047 [TBL] [Abstract][Full Text] [Related]
8. Analysis of Machine Learning Techniques for Heart Failure Readmissions. Mortazavi BJ; Downing NS; Bucholz EM; Dharmarajan K; Manhapra A; Li SX; Negahban SN; Krumholz HM Circ Cardiovasc Qual Outcomes; 2016 Nov; 9(6):629-640. PubMed ID: 28263938 [TBL] [Abstract][Full Text] [Related]
9. Rapid antigen detection and molecular tests for group A streptococcal infections for acute sore throat: systematic reviews and economic evaluation. Fraser H; Gallacher D; Achana F; Court R; Taylor-Phillips S; Nduka C; Stinton C; Willans R; Gill P; Mistry H Health Technol Assess; 2020 Jun; 24(31):1-232. PubMed ID: 32605705 [TBL] [Abstract][Full Text] [Related]
10. Predictive models for hospital readmission risk: A systematic review of methods. Artetxe A; Beristain A; Graña M Comput Methods Programs Biomed; 2018 Oct; 164():49-64. PubMed ID: 30195431 [TBL] [Abstract][Full Text] [Related]
11. Predicting breast cancer 5-year survival using machine learning: A systematic review. Li J; Zhou Z; Dong J; Fu Y; Li Y; Luan Z; Peng X PLoS One; 2021; 16(4):e0250370. PubMed ID: 33861809 [TBL] [Abstract][Full Text] [Related]
13. Predicting population health with machine learning: a scoping review. Morgenstern JD; Buajitti E; O'Neill M; Piggott T; Goel V; Fridman D; Kornas K; Rosella LC BMJ Open; 2020 Oct; 10(10):e037860. PubMed ID: 33109649 [TBL] [Abstract][Full Text] [Related]
14. Use of machine learning to analyse routinely collected intensive care unit data: a systematic review. Shillan D; Sterne JAC; Champneys A; Gibbison B Crit Care; 2019 Aug; 23(1):284. PubMed ID: 31439010 [TBL] [Abstract][Full Text] [Related]
15. PREDICTIVE MODELING OF HOSPITAL READMISSION RATES USING ELECTRONIC MEDICAL RECORD-WIDE MACHINE LEARNING: A CASE-STUDY USING MOUNT SINAI HEART FAILURE COHORT. Shameer K; Johnson KW; Yahi A; Miotto R; Li LI; Ricks D; Jebakaran J; Kovatch P; Sengupta PP; Gelijns S; Moskovitz A; Darrow B; David DL; Kasarskis A; Tatonetti NP; Pinney S; Dudley JT Pac Symp Biocomput; 2017; 22():276-287. PubMed ID: 27896982 [TBL] [Abstract][Full Text] [Related]
16. Readmissions After Acute Myocardial Infarction: How Often Do Patients Return to the Discharging Hospital? Rymer JA; Chen AY; Thomas L; Fonarow GC; Peterson ED; Wang TY J Am Heart Assoc; 2019 Oct; 8(19):e012059. PubMed ID: 31537135 [TBL] [Abstract][Full Text] [Related]
17. Systematic review and modelling of the cost-effectiveness of cardiac magnetic resonance imaging compared with current existing testing pathways in ischaemic cardiomyopathy. Campbell F; Thokala P; Uttley LC; Sutton A; Sutton AJ; Al-Mohammad A; Thomas SM Health Technol Assess; 2014 Sep; 18(59):1-120. PubMed ID: 25265259 [TBL] [Abstract][Full Text] [Related]
18. Personalized Pancreatic Cancer Management: A Systematic Review of How Machine Learning Is Supporting Decision-making. Bradley A; van der Meer R; McKay C Pancreas; 2019; 48(5):598-604. PubMed ID: 31090660 [TBL] [Abstract][Full Text] [Related]