These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 33677270)

  • 1. Recent progress in smartphone-based techniques for food safety and the detection of heavy metal ions in environmental water.
    Sivakumar R; Lee NY
    Chemosphere; 2021 Jul; 275():130096. PubMed ID: 33677270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical and Colorimetric Nanosensors for Detection of Heavy Metal Ions: A Review.
    Fakayode SO; Walgama C; Fernand Narcisse VE; Grant C
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progress in the design of portable colorimetric chemical sensing devices.
    Kant T; Shrivas K; Tejwani A; Tandey K; Sharma A; Gupta S
    Nanoscale; 2023 Dec; 15(47):19016-19038. PubMed ID: 37991896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smartphone-Based Techniques Using Carbon Dot Nanomaterials for Food Safety Analysis.
    Solanki R; Patra I; Kumar TCA; Kumar NB; Kandeel M; Sivaraman R; Turki Jalil A; Yasin G; Sharma S; Abdulameer Marhoon H
    Crit Rev Anal Chem; 2024 Aug; 54(5):923-941. PubMed ID: 35857650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum dot (QD)-based probes for multiplexed determination of heavy metal ions.
    Yin H; Truskewycz A; Cole IS
    Mikrochim Acta; 2020 May; 187(6):336. PubMed ID: 32430591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 3D printed smartphone optosensing platform for point-of-need food safety inspection.
    Liu Z; Zhang Y; Xu S; Zhang H; Tan Y; Ma C; Song R; Jiang L; Yi C
    Anal Chim Acta; 2017 May; 966():81-89. PubMed ID: 28372730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colorimetric detection of heavy metal ions with various chromogenic materials: Strategies and applications.
    Chen Z; Zhang Z; Qi J; You J; Ma J; Chen L
    J Hazard Mater; 2023 Jan; 441():129889. PubMed ID: 36087533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smartphone-Facilitated Mobile Colorimetric Probes for Rapid Monitoring of Chemical Contaminations in Food: Advances and Outlook.
    Ramírez-Coronel AA; Alameri AA; Altalbawy F; Sanaan Jabbar H; Lateef Al-Awsi GR; Iswanto AH; Altamimi AS; Shareef Mohsen K; Almulla AF; Mustafa YF
    Crit Rev Anal Chem; 2024; 54(7):2290-2308. PubMed ID: 36598426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smartphone-assisted robust enzymes@MOFs-based paper biosensor for point-of-care detection.
    Kou X; Tong L; Shen Y; Zhu W; Yin L; Huang S; Zhu F; Chen G; Ouyang G
    Biosens Bioelectron; 2020 May; 156():112095. PubMed ID: 32174563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Smartphone-Based Sensing System for On-Site Quantitation of Multiple Heavy Metal Ions Using Fluorescent Carbon Nanodots-Based Microarrays.
    Xiao M; Liu Z; Xu N; Jiang L; Yang M; Yi C
    ACS Sens; 2020 Mar; 5(3):870-878. PubMed ID: 32141287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-free heavy metal ion sensing via smartphone based app.
    Biswas R; Barman C; Neog A; Biswas S; Mazumder N
    Chemosphere; 2023 May; 322():138231. PubMed ID: 36841452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A portable multi-channel fluorescent paper-based microfluidic chip based on smartphone imaging for simultaneous detection of four heavy metals.
    Yuan M; Li C; Zheng Y; Cao H; Ye T; Wu X; Hao L; Yin F; Yu J; Xu F
    Talanta; 2024 Jan; 266(Pt 2):125112. PubMed ID: 37659229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colorimetric fluorescent paper strip with smartphone platform for quantitative detection of cadmium ions in real samples.
    Wang H; Da L; Yang L; Chu S; Yang F; Yu S; Jiang C
    J Hazard Mater; 2020 Jun; 392():122506. PubMed ID: 32193122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smartphone-assisted colorimetric sensor arrays based on nanozymes for high throughput identification of heavy metal ions in salmon.
    Wu S; Khan MA; Huang T; Liu X; Kang R; Zhao H; Cao H; Ye D
    J Hazard Mater; 2024 Dec; 480():135887. PubMed ID: 39305600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paper-Based Analytical Devices for Colorimetric and Luminescent Detection of Mercury in Waters: An Overview.
    Bendicho C; Lavilla I; Pena-Pereira F; la Calle I; Romero V
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Portable Nanoparticle-Based Sensors for Food Safety Assessment.
    Bülbül G; Hayat A; Andreescu S
    Sensors (Basel); 2015 Dec; 15(12):30736-58. PubMed ID: 26690169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smartphone-Based Point-of-Care Microfluidic Platform Fabricated with a ZnO Nanorod Template for Colorimetric Virus Detection.
    Xia Y; Chen Y; Tang Y; Cheng G; Yu X; He H; Cao G; Lu H; Liu Z; Zheng SY
    ACS Sens; 2019 Dec; 4(12):3298-3307. PubMed ID: 31769284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Food safety monitoring of the pesticide phenthoate using a smartphone-assisted paper-based sensor with bimetallic Cu@Ag core-shell nanoparticles.
    Shrivas K; Monisha ; Patel S; Thakur SS; Shankar R
    Lab Chip; 2020 Oct; 20(21):3996-4006. PubMed ID: 32966488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orthogonal paper biosensor for mercury(II) combining bioluminescence and colorimetric smartphone detection.
    Lopreside A; Montali L; Wang B; Tassoni A; Ferri M; Calabretta MM; Michelini E
    Biosens Bioelectron; 2021 Dec; 194():113569. PubMed ID: 34438340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Point-of-care testing based on smartphone: The current state-of-the-art (2017-2018).
    Liu J; Geng Z; Fan Z; Liu J; Chen H
    Biosens Bioelectron; 2019 May; 132():17-37. PubMed ID: 30851493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.