These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 33677388)

  • 21. Harnessing Effector-Triggered Immunity for Durable Disease Resistance.
    Zhang M; Coaker G
    Phytopathology; 2017 Aug; 107(8):912-919. PubMed ID: 28430023
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling Immune Dynamics in Plants Using JIMENA-Package.
    Osmanoglu Ö; Shams S; Dandekar T; Naseem M
    Methods Mol Biol; 2021; 2328():183-189. PubMed ID: 34251626
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unlocking Nature's Defense: Plant Pattern Recognition Receptors as Guardians Against Pathogenic Threats.
    Zhang C; Xie Y; He P; Shan L
    Mol Plant Microbe Interact; 2024 Feb; 37(2):73-83. PubMed ID: 38416059
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Constant vigilance: plant functions guarded by resistance proteins.
    Su J; Spears BJ; Kim SH; Gassmann W
    Plant J; 2018 Feb; 93(4):637-650. PubMed ID: 29232015
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fungal effectors, the double edge sword of phytopathogens.
    Pradhan A; Ghosh S; Sahoo D; Jha G
    Curr Genet; 2021 Feb; 67(1):27-40. PubMed ID: 33146780
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Seeing is believing: Exploiting advances in structural biology to understand and engineer plant immunity.
    Outram MA; Figueroa M; Sperschneider J; Williams SJ; Dodds PN
    Curr Opin Plant Biol; 2022 Jun; 67():102210. PubMed ID: 35461025
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Suppression of HopZ Effector-Triggered Plant Immunity in a Natural Pathosystem.
    Rufián JS; Lucía A; Rueda-Blanco J; Zumaquero A; Guevara CM; Ortiz-Martín I; Ruiz-Aldea G; Macho AP; Beuzón CR; Ruiz-Albert J
    Front Plant Sci; 2018; 9():977. PubMed ID: 30154802
    [TBL] [Abstract][Full Text] [Related]  

  • 28. From pathogen genomes to host plant processes: the power of plant parasitic oomycetes.
    Pais M; Win J; Yoshida K; Etherington GJ; Cano LM; Raffaele S; Banfield MJ; Jones A; Kamoun S; Saunders DG
    Genome Biol; 2013 Jun; 14(6):211. PubMed ID: 23809564
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Suppression of PAMP-triggered immunity (PTI) by effector proteins synthesized by phytopathogens and delivered into cells of infected plant].
    Hetmann A; Kowalczyk S
    Postepy Biochem; 2019 Mar; 65(1):58-71. PubMed ID: 30901184
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering effector-triggered immunity in rice: Obstacles and perspectives.
    Vo KTX; Yi Q; Jeon JS
    Plant Cell Environ; 2023 Apr; 46(4):1143-1156. PubMed ID: 36305486
    [TBL] [Abstract][Full Text] [Related]  

  • 31. miRNA Mediated Regulation and Interaction between Plants and Pathogens.
    Yang X; Zhang L; Yang Y; Schmid M; Wang Y
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33805611
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An oomycete plant pathogen reprograms host pre-mRNA splicing to subvert immunity.
    Huang J; Gu L; Zhang Y; Yan T; Kong G; Kong L; Guo B; Qiu M; Wang Y; Jing M; Xing W; Ye W; Wu Z; Zhang Z; Zheng X; Gijzen M; Wang Y; Dong S
    Nat Commun; 2017 Dec; 8(1):2051. PubMed ID: 29233978
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Salicylic Acid and Jasmonic Acid Pathways are Activated in Spatially Different Domains Around the Infection Site During Effector-Triggered Immunity in Arabidopsis thaliana.
    Betsuyaku S; Katou S; Takebayashi Y; Sakakibara H; Nomura N; Fukuda H
    Plant Cell Physiol; 2018 Jan; 59(1):8-16. PubMed ID: 29177423
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arabidopsis thaliana SOBER1 (SUPPRESSOR OF AVRBST-ELICITED RESISTANCE 1) suppresses plant immunity triggered by multiple bacterial acetyltransferase effectors.
    Choi S; Jayaraman J; Sohn KH
    New Phytol; 2018 Jul; 219(1):324-335. PubMed ID: 29577317
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome plasticity in filamentous plant pathogens contributes to the emergence of novel effectors and their cellular processes in the host.
    Dong Y; Li Y; Qi Z; Zheng X; Zhang Z
    Curr Genet; 2016 Feb; 62(1):47-51. PubMed ID: 26228744
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Screening soybean cyst nematode effectors for their ability to suppress plant immunity.
    Pogorelko G; Wang J; Juvale PS; Mitchum MG; Baum TJ
    Mol Plant Pathol; 2020 Sep; 21(9):1240-1247. PubMed ID: 32672422
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PTI and ETI: convergent pathways with diverse elicitors.
    Chang M; Chen H; Liu F; Fu ZQ
    Trends Plant Sci; 2022 Feb; 27(2):113-115. PubMed ID: 34863646
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tactics of host manipulation by intracellular effectors from plant pathogenic fungi.
    Figueroa M; Ortiz D; Henningsen EC
    Curr Opin Plant Biol; 2021 Aug; 62():102054. PubMed ID: 33992840
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two unequally redundant "helper" immune receptor families mediate Arabidopsis thaliana intracellular "sensor" immune receptor functions.
    Saile SC; Jacob P; Castel B; Jubic LM; Salas-Gonzáles I; Bäcker M; Jones JDG; Dangl JL; El Kasmi F
    PLoS Biol; 2020 Sep; 18(9):e3000783. PubMed ID: 32925907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Complex regulation of an R gene SNC1 revealed by auto-immune mutants.
    Gou M; Hua J
    Plant Signal Behav; 2012 Feb; 7(2):213-6. PubMed ID: 22415045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.