These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 33677485)

  • 1. NIBNA: a network-based node importance approach for identifying breast cancer drivers.
    Chaudhary MS; Pham VVH; Le TD
    Bioinformatics; 2021 Sep; 37(17):2521-2528. PubMed ID: 33677485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CBNA: A control theory based method for identifying coding and non-coding cancer drivers.
    Pham VVH; Liu L; Bracken CP; Goodall GJ; Long Q; Li J; Le TD
    PLoS Comput Biol; 2019 Dec; 15(12):e1007538. PubMed ID: 31790386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A network-based method for identifying cancer driver genes based on node control centrality.
    Li F; Li H; Shang J; Liu JX; Dai L; Liu X; Li Y
    Exp Biol Med (Maywood); 2023 Feb; 248(3):232-241. PubMed ID: 36573462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DriverGroup: a novel method for identifying driver gene groups.
    Pham VVH; Liu L; Bracken CP; Goodall GJ; Li J; Le TD
    Bioinformatics; 2020 Dec; 36(Suppl_2):i583-i591. PubMed ID: 33381812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pDriver: a novel method for unravelling personalized coding and miRNA cancer drivers.
    Pham VVH; Liu L; Bracken CP; Nguyen T; Goodall GJ; Li J; Le TD
    Bioinformatics; 2021 Oct; 37(19):3285-3292. PubMed ID: 33904576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Driver gene detection through Bayesian network integration of mutation and expression profiles.
    Chen Z; Lu Y; Cao B; Zhang W; Edwards A; Zhang K
    Bioinformatics; 2022 May; 38(10):2781-2790. PubMed ID: 35561191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of cancer fusion drivers using network fusion centrality.
    Wu CC; Kannan K; Lin S; Yen L; Milosavljevic A
    Bioinformatics; 2013 May; 29(9):1174-81. PubMed ID: 23505294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of different functional prediction scores using a gene-based permutation model for identifying cancer driver genes.
    Nono AD; Chen K; Liu X
    BMC Med Genomics; 2019 Jan; 12(Suppl 1):22. PubMed ID: 30704472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PersonaDrive: a method for the identification and prioritization of personalized cancer drivers.
    Erten C; Houdjedj A; Kazan H; Taleb Bahmed AA
    Bioinformatics; 2022 Jun; 38(13):3407-3414. PubMed ID: 35579340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint reconstruction of multiple gene networks by simultaneously capturing inter-tumor and intra-tumor heterogeneity.
    Tu JJ; Ou-Yang L; Yan H; Zhang XF; Qin H
    Bioinformatics; 2020 May; 36(9):2755-2762. PubMed ID: 31971577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential network analysis by simultaneously considering changes in gene interactions and gene expression.
    Tu JJ; Ou-Yang L; Zhu Y; Yan H; Qin H; Zhang XF
    Bioinformatics; 2021 Dec; 37(23):4414-4423. PubMed ID: 34245246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LncmiRSRN: identification and analysis of long non-coding RNA related miRNA sponge regulatory network in human cancer.
    Zhang J; Liu L; Li J; Le TD
    Bioinformatics; 2018 Dec; 34(24):4232-4240. PubMed ID: 29955818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. OMEN: network-based driver gene identification using mutual exclusivity.
    Van Daele D; Weytjens B; De Raedt L; Marchal K
    Bioinformatics; 2022 Jun; 38(12):3245-3251. PubMed ID: 35552634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A learning-based framework for miRNA-disease association identification using neural networks.
    Peng J; Hui W; Li Q; Chen B; Hao J; Jiang Q; Shang X; Wei Z
    Bioinformatics; 2019 Nov; 35(21):4364-4371. PubMed ID: 30977780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying and ranking potential cancer drivers using representation learning on attributed network.
    Peng W; Yi S; Dai W; Wang J
    Methods; 2021 Aug; 192():13-24. PubMed ID: 32758683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PRODIGY: personalized prioritization of driver genes.
    Dinstag G; Shamir R
    Bioinformatics; 2020 Mar; 36(6):1831-1839. PubMed ID: 31681944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MODIG: integrating multi-omics and multi-dimensional gene network for cancer driver gene identification based on graph attention network model.
    Zhao W; Gu X; Chen S; Wu J; Zhou Z
    Bioinformatics; 2022 Oct; 38(21):4901-4907. PubMed ID: 36094338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of cancer driver genes through network-based moment propagation of mutation scores.
    Gumpinger AC; Lage K; Horn H; Borgwardt K
    Bioinformatics; 2020 Jul; 36(Suppl_1):i508-i515. PubMed ID: 32657361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporating prior information into differential network analysis using non-paranormal graphical models.
    Zhang XF; Ou-Yang L; Yan H
    Bioinformatics; 2017 Aug; 33(16):2436-2445. PubMed ID: 28407042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.
    Yang H; Wei Q; Zhong X; Yang H; Li B
    Bioinformatics; 2017 Feb; 33(4):483-490. PubMed ID: 27797769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.