BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 33678175)

  • 1. An effective combination of codon optimization, gene dosage, and process optimization for high-level production of fibrinolytic enzyme in Komagataella phaffii (Pichia pastoris).
    Che Z; Cao X; Chen G; Liang Z
    BMC Biotechnol; 2020 Dec; 20(1):63. PubMed ID: 33276774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Integrating Protein Structure, Sequence, and Dynamics to Predict the Enzyme Activity of Bovine Enterokinase Variants.
    Elia Venanzi NA; Basciu A; Vargiu AV; Kiparissides A; Dalby PA; Dikicioglu D
    J Chem Inf Model; 2024 Apr; 64(7):2681-2694. PubMed ID: 38386417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Phase 2 Randomized Placebo-Controlled Adjuvant Trial of GI-4000, a Recombinant Yeast Expressing Mutated RAS Proteins in Patients with Resected Pancreas Cancer.
    Muscarella P; Bekaii-Saab T; McIntyre K; Rosemurgy A; Ross SB; Richards DA; Fisher WE; Flynn PJ; Mattson A; Coeshott C; Roder H; Roder J; Harrell FE; Cohn A; Rodell TC; Apelian D
    J Pancreat Cancer; 2021; 7(1):8-19. PubMed ID: 33786412
    [No Abstract]   [Full Text] [Related]  

  • 4. In Vitro and In Vivo Evaluation of the Probiotic Potential of Antarctic Yeasts.
    Coutinho JOPA; Peixoto TS; de Menezes GCA; Carvalho CR; Ogaki MB; Gomes ECQ; Rosa CA; Rosa LH; Arantes RME; Nicoli JR; Tiago FCP; Martins FS
    Probiotics Antimicrob Proteins; 2021 Oct; 13(5):1338-1354. PubMed ID: 33759043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-shot identification of SARS-CoV-2 S RBD escape mutants using yeast screening.
    Urdaniz IF; Steiner PJ; Kirby MB; Zhao F; Haas CM; Barman S; Rhodes ER; Peng L; Sprenger KG; Jardine JG; Whitehead TA
    bioRxiv; 2021 Mar; ():. PubMed ID: 33758848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioprocess performance analysis of novel methanol-independent promoters for recombinant protein production with Pichia pastoris.
    Garrigós-Martínez J; Vuoristo K; Nieto-Taype MA; Tähtiharju J; Uusitalo J; Tukiainen P; Schmid C; Tolstorukov I; Madden K; Penttilä M; Montesinos-Seguí JL; Valero F; Glieder A; Garcia-Ortega X
    Microb Cell Fact; 2021 Mar; 20(1):74. PubMed ID: 33757505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The number of catalytic cycles in an enzyme's lifetime and why it matters to metabolic engineering.
    Hanson AD; McCarty DR; Henry CS; Xian X; Joshi J; Patterson JA; García-García JD; Fleischmann SD; Tivendale ND; Millar AH
    Proc Natl Acad Sci U S A; 2021 Mar; 118(13):. PubMed ID: 33753504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosyntheses of geranic acid and citronellic acid from monoterpene alcohols by Saccharomyces cerevisiae.
    Ohashi Y; Huang S; Maeda I
    Biosci Biotechnol Biochem; 2021 May; 85(6):1530-1535. PubMed ID: 33713103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review: Lessons Learned From Clinical Trials Using Antimicrobial Peptides (AMPs).
    Dijksteel GS; Ulrich MMW; Middelkoop E; Boekema BKHL
    Front Microbiol; 2021; 12():616979. PubMed ID: 33692766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-resolution protein architecture of the budding yeast genome.
    Rossi MJ; Kuntala PK; Lai WKM; Yamada N; Badjatia N; Mittal C; Kuzu G; Bocklund K; Farrell NP; Blanda TR; Mairose JD; Basting AV; Mistretta KS; Rocco DJ; Perkinson ES; Kellogg GD; Mahony S; Pugh BF
    Nature; 2021 Apr; 592(7853):309-314. PubMed ID: 33692541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of an improved universal signal peptide based on the α-factor mating secretion signal for enzyme production in yeast.
    Aza P; Molpeceres G; de Salas F; Camarero S
    Cell Mol Life Sci; 2021 Apr; 78(7):3691-3707. PubMed ID: 33687500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cohesin dysfunction results in cell wall defects in budding yeast.
    Kothiwal D; Gopinath S; Laloraya S
    Genetics; 2021 Mar; 217(1):1-16. PubMed ID: 33683362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of the fermentation and downstream processes for human enterokinase production in Pichia pastoris.
    Melicherová K; Krahulec J; Šafránek M; Lišková V; Hopková D; Széliová D; Turňa J
    Appl Microbiol Biotechnol; 2017 Mar; 101(5):1927-1934. PubMed ID: 27826720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Optimization of enterokinase secretion in Pichia pastoris].
    Liang Q; Shi J; Jin X; Du G; Kang Z
    Sheng Wu Gong Cheng Xue Bao; 2020 Aug; 36(8):1689-1698. PubMed ID: 32924367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of recombinant chinese bovine enterokinase catalytic subunit in P. pastoris and its purification and characterization.
    Fang L; Sun QM; Hua ZC
    Acta Biochim Biophys Sin (Shanghai); 2004 Jul; 36(7):513-7. PubMed ID: 15248027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering of the unfolded protein response pathway in Pichia pastoris: enhancing production of secreted recombinant proteins.
    Raschmanová H; Weninger A; Knejzlík Z; Melzoch K; Kovar K
    Appl Microbiol Biotechnol; 2021 Jun; 105(11):4397-4414. PubMed ID: 34037840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins.
    Karbalaei M; Rezaee SA; Farsiani H
    J Cell Physiol; 2020 Sep; 235(9):5867-5881. PubMed ID: 32057111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of media components from different suppliers on enterokinase productivity in Pichia pastoris.
    Krahulec J; Šafránek M
    BMC Biotechnol; 2021 Mar; 21(1):19. PubMed ID: 33678175
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.