BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 3367932)

  • 1. Rhodoquinone requirement of the Hymenolepis diminuta mitochondrial electron transport system.
    Fioravanti CF; Kim Y
    Mol Biochem Parasitol; 1988 Mar; 28(2):129-34. PubMed ID: 3367932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial hydrogen peroxide formation and the fumarate reductase of Hymenolepis diminuta.
    Fioravanti CF; Reisig JM
    J Parasitol; 1990 Aug; 76(4):457-63. PubMed ID: 2380854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling of mitochondrial NADPH : NAD transhydrogenase with electron transport in adult Hymenolepis diminuta.
    Fioravanti CF
    J Parasitol; 1981 Dec; 67(6):823-31. PubMed ID: 7328455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial NADH oxidase activity of adult Hymenolepis diminuta (Cestoda).
    Fioravanti CF
    Comp Biochem Physiol B; 1982; 72(4):591-6. PubMed ID: 7128112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial malate dehydrogenase, decarboxylating ("malic" enzyme) and transhydrogenase activities of adult Hymenolepis microstoma (Cestoda).
    Fioravanti CF
    J Parasitol; 1982 Apr; 68(2):213-20. PubMed ID: 7077455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phospholipid dependence of the Hymenolepis diminuta mitochondrial NADPH:NAD transhydrogenase.
    Fioravanti CF; Kim Y
    J Parasitol; 1983 Dec; 69(6):1048-54. PubMed ID: 6674455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intramitochondrial localization of fumarate reductase, NADPH----NAD transhydrogenase, 'malic' enzyme and fumarase in adult Hymenolepis diminuta.
    McKelvey JR; Fioravanti CF
    Mol Biochem Parasitol; 1985 Nov; 17(2):253-63. PubMed ID: 4069158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of cations and anthelmintics on enzymes of respiratory chains of the cestode Hymenolepis diminuta.
    Wani JH; Srivastava VM
    Biochem Mol Biol Int; 1994 Sep; 34(2):239-50. PubMed ID: 7849634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy-linked mitochondrial pyridine nucleotide transhydrogenase of adult Hymenolepis diminuta.
    Fioravanti CF; McKelvey JR; Reisig JM
    J Parasitol; 1992 Oct; 78(5):774-8. PubMed ID: 1403417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron-transfer complexes of Ascaris suum muscle mitochondria. III. Composition and fumarate reductase activity of complex II.
    Kita K; Takamiya S; Furushima R; Ma YC; Suzuki H; Ozawa T; Oya H
    Biochim Biophys Acta; 1988 Sep; 935(2):130-40. PubMed ID: 2843227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial ubiquinol oxidation is necessary for tumour growth.
    Martínez-Reyes I; Cardona LR; Kong H; Vasan K; McElroy GS; Werner M; Kihshen H; Reczek CR; Weinberg SE; Gao P; Steinert EM; Piseaux R; Budinger GRS; Chandel NS
    Nature; 2020 Sep; 585(7824):288-292. PubMed ID: 32641834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron transport in Paracoccus halodenitrificans and the role of ubiquinone.
    Hochstein LI; Cronin SE
    Can J Microbiol; 1984 May; 30(5):572-7. PubMed ID: 11536581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction and oxidation of cytochrome C by Hymenolepis diminuta (Cestoda) mitochondria.
    Kim Y; Fioravanti CF
    Comp Biochem Physiol B; 1985; 81(2):335-9. PubMed ID: 2990809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of electron-transfer flavoprotein: rhodoquinone oxidoreductase from anaerobic mitochondria of the adult parasitic nematode, Ascaris suum.
    Ma YC; Funk M; Dunham WR; Komuniecki R
    J Biol Chem; 1993 Sep; 268(27):20360-5. PubMed ID: 8376393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling of "malic" enzyme and NADPH:NAD transhydrogenase in the energetics of Hymenolepis diminuta (Cestoda).
    McKelvey JR; Fioravanti CF
    Comp Biochem Physiol B; 1984; 77(4):737-42. PubMed ID: 6734150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free-living nematodes Caenorhabditis elegans possess in their mitochondria an additional rhodoquinone, an essential component of the eukaryotic fumarate reductase system.
    Takamiya S; Matsui T; Taka H; Murayama K; Matsuda M; Aoki T
    Arch Biochem Biophys; 1999 Nov; 371(2):284-9. PubMed ID: 10545216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic NADH-fumarate reductase system is predominant in the respiratory chain of Echinococcus multilocularis, providing a novel target for the chemotherapy of alveolar echinococcosis.
    Matsumoto J; Sakamoto K; Shinjyo N; Kido Y; Yamamoto N; Yagi K; Miyoshi H; Nonaka N; Katakura K; Kita K; Oku Y
    Antimicrob Agents Chemother; 2008 Jan; 52(1):164-70. PubMed ID: 17954696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of cytochrome C oxidase and cytochrome C peroxidase in mitochondria of Hymenolepis diminuta (Cestoda).
    McKelvey JR; Fioravanti CF
    Comp Biochem Physiol B; 1986; 85(2):333-5. PubMed ID: 3022983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Inhibitory effect of bithionol on NADH-fumarate reductase in ascarides].
    Ikuma K; Makimura M; Murakoshi Y
    Yakugaku Zasshi; 1993 Sep; 113(9):663-9. PubMed ID: 8229665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase.
    Kotlyar AB; Vinogradov AD
    Biochim Biophys Acta; 1990 Aug; 1019(2):151-8. PubMed ID: 2119805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.