BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

649 related articles for article (PubMed ID: 33679322)

  • 1. Emerging Evidence Highlighting the Importance of Redox Dysregulation in the Pathogenesis of Amyotrophic Lateral Sclerosis (ALS).
    Jagaraj CJ; Parakh S; Atkin JD
    Front Cell Neurosci; 2020; 14():581950. PubMed ID: 33679322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox dysregulation as a driver for DNA damage and its relationship to neurodegenerative diseases.
    Shadfar S; Parakh S; Jamali MS; Atkin JD
    Transl Neurodegener; 2023 Apr; 12(1):18. PubMed ID: 37055865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox regulation in amyotrophic lateral sclerosis.
    Parakh S; Spencer DM; Halloran MA; Soo KY; Atkin JD
    Oxid Med Cell Longev; 2013; 2013():408681. PubMed ID: 23533690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Redox Activity of Protein Disulfide Isomerase Inhibits ALS Phenotypes in Cellular and Zebrafish Models.
    Parakh S; Shadfar S; Perri ER; Ragagnin AMG; Piattoni CV; Fogolín MB; Yuan KC; Shahheydari H; Don EK; Thomas CJ; Hong Y; Comini MA; Laird AS; Spencer DM; Atkin JD
    iScience; 2020 May; 23(5):101097. PubMed ID: 32446203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear SOD1 in Growth Control, Oxidative Stress Response, Amyotrophic Lateral Sclerosis, and Cancer.
    Xu J; Su X; Burley SK; Zheng XFS
    Antioxidants (Basel); 2022 Feb; 11(2):. PubMed ID: 35204309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein disulphide isomerase is associated with mutant SOD1 in canine degenerative myelopathy.
    Chang RC; Parakh S; Coates JR; Long S; Atkin JD
    Neuroreport; 2019 Jan; 30(1):8-13. PubMed ID: 30422940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ERp57 is protective against mutant SOD1-induced cellular pathology in amyotrophic lateral sclerosis.
    Parakh S; Jagaraj CJ; Vidal M; Ragagnin AMG; Perri ER; Konopka A; Toth RP; Galper J; Blair IP; Thomas CJ; Walker AK; Yang S; Spencer DM; Atkin JD
    Hum Mol Genet; 2018 Apr; 27(8):1311-1331. PubMed ID: 29409023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA Dysregulation in Amyotrophic Lateral Sclerosis.
    Butti Z; Patten SA
    Front Genet; 2018; 9():712. PubMed ID: 30723494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AMPK Signalling and Defective Energy Metabolism in Amyotrophic Lateral Sclerosis.
    Perera ND; Turner BJ
    Neurochem Res; 2016 Mar; 41(3):544-53. PubMed ID: 26202426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo EPR pharmacokinetic evaluation of the redox status and the blood brain barrier permeability in the SOD1
    Stamenković S; Pavićević A; Mojović M; Popović-Bijelić A; Selaković V; Andjus P; Bačić G
    Free Radic Biol Med; 2017 Jul; 108():258-269. PubMed ID: 28366802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein Disulphide Isomerases: emerging roles of PDI and ERp57 in the nervous system and as therapeutic targets for ALS.
    Perri E; Parakh S; Atkin J
    Expert Opin Ther Targets; 2017 Jan; 21(1):37-49. PubMed ID: 27786579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Misregulation of iron homeostasis in amyotrophic lateral sclerosis.
    Gajowiak A; Styś A; Starzyński RR; Staroń R; Lipiński P
    Postepy Hig Med Dosw (Online); 2016 Jun; 70(0):709-21. PubMed ID: 27356602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amyotrophic Lateral Sclerosis: Molecular Mechanisms, Biomarkers, and Therapeutic Strategies.
    Yang X; Ji Y; Wang W; Zhang L; Chen Z; Yu M; Shen Y; Ding F; Gu X; Sun H
    Antioxidants (Basel); 2021 Jun; 10(7):. PubMed ID: 34202494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia.
    Calabrese V; Lodi R; Tonon C; D'Agata V; Sapienza M; Scapagnini G; Mangiameli A; Pennisi G; Stella AM; Butterfield DA
    J Neurol Sci; 2005 Jun; 233(1-2):145-62. PubMed ID: 15896810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative stress and mitochondrial damage: importance in non-SOD1 ALS.
    Carrì MT; Valle C; Bozzo F; Cozzolino M
    Front Cell Neurosci; 2015; 9():41. PubMed ID: 25741238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox regulation of cellular stress response in neurodegenerative disorders.
    Calabrese V; Guagliano E; Sapienza M; Mancuso C; Butterfield DA; Stella AM
    Ital J Biochem; 2006; 55(3-4):263-82. PubMed ID: 17274531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immune dysregulation in amyotrophic lateral sclerosis: mechanisms and emerging therapies.
    Beers DR; Appel SH
    Lancet Neurol; 2019 Feb; 18(2):211-220. PubMed ID: 30663610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular Redox Systems Impact the Aggregation of Cu,Zn Superoxide Dismutase Linked to Familial Amyotrophic Lateral Sclerosis.
    Álvarez-Zaldiernas C; Lu J; Zheng Y; Yang H; Blasi J; Solsona C; Holmgren A
    J Biol Chem; 2016 Aug; 291(33):17197-208. PubMed ID: 27261461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice--a model of familial amyotrophic lateral sclerosis.
    Poon HF; Hensley K; Thongboonkerd V; Merchant ML; Lynn BC; Pierce WM; Klein JB; Calabrese V; Butterfield DA
    Free Radic Biol Med; 2005 Aug; 39(4):453-62. PubMed ID: 16043017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SOD1 in neurotoxicity and its controversial roles in SOD1 mutation-negative ALS.
    Hayashi Y; Homma K; Ichijo H
    Adv Biol Regul; 2016 Jan; 60():95-104. PubMed ID: 26563614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.