BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

649 related articles for article (PubMed ID: 33679322)

  • 21. From Mouse Models to Human Disease: An Approach for Amyotrophic Lateral Sclerosis.
    Alrafiah AR
    In Vivo; 2018; 32(5):983-998. PubMed ID: 30150420
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Unfolded Protein Response and the Role of Protein Disulfide Isomerase in Neurodegeneration.
    Perri ER; Thomas CJ; Parakh S; Spencer DM; Atkin JD
    Front Cell Dev Biol; 2015; 3():80. PubMed ID: 26779479
    [TBL] [Abstract][Full Text] [Related]  

  • 23. γ-Oryzanol mitigates oxidative stress and prevents mutant SOD1-Related neurotoxicity in Drosophila and cell models of amyotrophic lateral sclerosis.
    Zhang C; Liang W; Wang H; Yang Y; Wang T; Wang S; Wang X; Wang Y; Feng H
    Neuropharmacology; 2019 Dec; 160():107777. PubMed ID: 31521619
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of autophagy in the pathogenesis of amyotrophic lateral sclerosis.
    Lee JK; Shin JH; Lee JE; Choi EJ
    Biochim Biophys Acta; 2015 Nov; 1852(11):2517-24. PubMed ID: 26264610
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 2-DE and MALDI-TOF-MS for a comparative analysis of proteins expressed in different cellular models of amyotrophic lateral sclerosis.
    Di Poto C; Iadarola P; Bardoni AM; Passadore I; Giorgetti S; Cereda C; Carrì MT; Ceroni M; Salvini R
    Electrophoresis; 2007 Dec; 28(23):4320-9. PubMed ID: 17979159
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring the genetics and non-cell autonomous mechanisms underlying ALS/FTLD.
    Chen H; Kankel MW; Su SC; Han SWS; Ofengeim D
    Cell Death Differ; 2018 Mar; 25(4):648-662. PubMed ID: 29459769
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitochondrial dysfunction is a converging point of multiple pathological pathways in amyotrophic lateral sclerosis.
    Shi P; Wei Y; Zhang J; Gal J; Zhu H
    J Alzheimers Dis; 2010; 20 Suppl 2():S311-24. PubMed ID: 20463400
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of oxidative stress in degeneration of the neuromuscular junction in amyotrophic lateral sclerosis.
    Pollari E; Goldsteins G; Bart G; Koistinaho J; Giniatullin R
    Front Cell Neurosci; 2014; 8():131. PubMed ID: 24860432
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neurodegeneration in amyotrophic lateral sclerosis: the role of oxidative stress and altered homeostasis of metals.
    Carrí MT; Ferri A; Cozzolino M; Calabrese L; Rotilio G
    Brain Res Bull; 2003 Aug; 61(4):365-74. PubMed ID: 12909279
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases.
    Singh A; Kukreti R; Saso L; Kukreti S
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31013638
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Metadata Analysis of Oxidative Stress Etiology in Preclinical Amyotrophic Lateral Sclerosis: Benefits of Antioxidant Therapy.
    Bond L; Bernhardt K; Madria P; Sorrentino K; Scelsi H; Mitchell CS
    Front Neurosci; 2018; 12():10. PubMed ID: 29416499
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neuroprotection by urate on the mutant hSOD1-related cellular and Drosophila models of amyotrophic lateral sclerosis: Implication for GSH synthesis via activating Akt/GSK3β/Nrf2/GCLC pathways.
    Zhang C; Yang Y; Liang W; Wang T; Wang S; Wang X; Wang Y; Jiang H; Feng H
    Brain Res Bull; 2019 Mar; 146():287-301. PubMed ID: 30690059
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MicroRNA Metabolism and Dysregulation in Amyotrophic Lateral Sclerosis.
    Rinchetti P; Rizzuti M; Faravelli I; Corti S
    Mol Neurobiol; 2018 Mar; 55(3):2617-2630. PubMed ID: 28421535
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Superoxide dismutase 1 mutation in a cellular model of amyotrophic lateral sclerosis shifts energy generation from oxidative phosphorylation to glycolysis.
    Allen SP; Rajan S; Duffy L; Mortiboys H; Higginbottom A; Grierson AJ; Shaw PJ
    Neurobiol Aging; 2014 Jun; 35(6):1499-509. PubMed ID: 24439480
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glutathione in the Nervous System as a Potential Therapeutic Target to Control the Development and Progression of Amyotrophic Lateral Sclerosis.
    Kim K
    Antioxidants (Basel); 2021 Jun; 10(7):. PubMed ID: 34201812
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Autophagy Dysregulation in ALS: When Protein Aggregates Get Out of Hand.
    Ramesh N; Pandey UB
    Front Mol Neurosci; 2017; 10():263. PubMed ID: 28878620
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding ALS: new therapeutic approaches.
    Musarò A
    FEBS J; 2013 Sep; 280(17):4315-22. PubMed ID: 23217177
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New links between SOD1 and metabolic dysfunction from a yeast model of amyotrophic lateral sclerosis.
    Bastow EL; Peswani AR; Tarrant DS; Pentland DR; Chen X; Morgan A; Staniforth GL; Tullet JM; Rowe ML; Howard MJ; Tuite MF; Gourlay CW
    J Cell Sci; 2016 Nov; 129(21):4118-4129. PubMed ID: 27656112
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Emerging understanding of the genotype-phenotype relationship in amyotrophic lateral sclerosis.
    Goutman SA; Chen KS; Paez-Colasante X; Feldman EL
    Handb Clin Neurol; 2018; 148():603-623. PubMed ID: 29478603
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Copper Homeostasis as a Therapeutic Target in Amyotrophic Lateral Sclerosis with SOD1 Mutations.
    Tokuda E; Furukawa Y
    Int J Mol Sci; 2016 Apr; 17(5):. PubMed ID: 27136532
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.