These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 33679335)

  • 1. Nicotine Enhances Amplitude and Consistency of Timing of Responses to Acoustic Trains in A1.
    Intskirveli I; Metherate R
    Front Neural Circuits; 2021; 15():597401. PubMed ID: 33679335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nicotinic neuromodulation in auditory cortex requires MAPK activation in thalamocortical and intracortical circuits.
    Intskirveli I; Metherate R
    J Neurophysiol; 2012 May; 107(10):2782-93. PubMed ID: 22357798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systemic Nicotine Increases Gain and Narrows Receptive Fields in A1 via Integrated Cortical and Subcortical Actions.
    Askew C; Intskirveli I; Metherate R
    eNeuro; 2017; 4(3):. PubMed ID: 28660244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heightened nicotinic regulation of auditory cortex during adolescence.
    Kawai HD; Kang HA; Metherate R
    J Neurosci; 2011 Oct; 31(40):14367-77. PubMed ID: 21976522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tone-detection training enhances spectral integration mediated by intracortical pathways in primary auditory cortex.
    Guo F; Intskirveli I; Blake DT; Metherate R
    Neurobiol Learn Mem; 2013 Mar; 101():75-84. PubMed ID: 23357284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracortical circuits amplify sound-evoked activity in primary auditory cortex following systemic injection of salicylate in the rat.
    Stolzberg D; Chrostowski M; Salvi RJ; Allman BL
    J Neurophysiol; 2012 Jul; 108(1):200-14. PubMed ID: 22496535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MK-801 disrupts and nicotine augments 40 Hz auditory steady state responses in the auditory cortex of the urethane-anesthetized rat.
    Sivarao DV; Frenkel M; Chen P; Healy FL; Lodge NJ; Zaczek R
    Neuropharmacology; 2013 Oct; 73():1-9. PubMed ID: 23688921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nicotinic modulation of tone-evoked responses in auditory cortex reflects the strength of prior auditory learning.
    Liang K; Poytress BS; Weinberger NM; Metherate R
    Neurobiol Learn Mem; 2008 Jul; 90(1):138-46. PubMed ID: 18378471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auditory brainstem response recording to multiple interleaved broadband chirps.
    Cebulla M; Stürzebecher E; Don M; Müller-Mazzotta J
    Ear Hear; 2012; 33(4):466-79. PubMed ID: 22343544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal integration and oscillatory responses of the human auditory cortex revealed by evoked magnetic fields to click trains.
    Forss N; Mäkelä JP; McEvoy L; Hari R
    Hear Res; 1993 Jun; 68(1):89-96. PubMed ID: 8376218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of auditory evoked potentials to acoustic beats and to binaural beats.
    Pratt H; Starr A; Michalewski HJ; Dimitrijevic A; Bleich N; Mittelman N
    Hear Res; 2010 Apr; 262(1-2):34-44. PubMed ID: 20123120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sound- and current-driven laminar profiles and their application method mimicking acoustic responses in the mouse auditory cortex in vivo.
    Muramatsu S; Toda M; Nishikawa J; Tateno T
    Brain Res; 2019 Oct; 1721():146312. PubMed ID: 31323198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of infraslow potentials in the primary auditory cortex: component analysis and contribution of specific thalamic-cortical and non-specific brainstem-cortical influences.
    Filippov IV; Williams WC; Krebs AA; Pugachev KS
    Brain Res; 2008 Jul; 1219():66-77. PubMed ID: 18534565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.
    Nikjeh DA; Lister JJ; Frisch SA
    Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of mid and late evoked sinks in laminar current source density profiles of columns in the primary auditory cortex.
    Schaefer MK; Hechavarría JC; Kössl M
    Front Neural Circuits; 2015; 9():52. PubMed ID: 26557058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient and steady state auditory responses with direct acoustic cochlear stimulation.
    Verhaert N; Hofmann M; Wouters J
    Ear Hear; 2015; 36(3):320-9. PubMed ID: 25401379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of human auditory steady-state responses (SSRs). II: Addition of responses to individual stimuli.
    Santarelli R; Maurizi M; Conti G; Ottaviani F; Paludetti G; Pettorossi VE
    Hear Res; 1995 Mar; 83(1-2):9-18. PubMed ID: 7607994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of complex tonal stimuli on latency and amplitude of a late auditory evoked potential.
    Marx CG; Goshorn EL
    J Acoust Soc Am; 2016 May; 139(5):2320. PubMed ID: 27250127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convergence of nicotine-induced and auditory-evoked neural activity activates ERK in auditory cortex.
    Kawai HD; La M; Kang HA; Hashimoto Y; Liang K; Lazar R; Metherate R
    Synapse; 2013 Aug; 67(8):455-68. PubMed ID: 23401204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of evoked potentials and high-frequency (gamma-band) oscillating potentials in rat auditory cortex.
    Franowicz MN; Barth DS
    J Neurophysiol; 1995 Jul; 74(1):96-112. PubMed ID: 7472356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.