These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33679363)

  • 1. Constructing Brain Connectivity Model Using Causal Network Reconstruction Approach.
    Saetia S; Yoshimura N; Koike Y
    Front Neuroinform; 2021; 15():619557. PubMed ID: 33679363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating effective brain connectivity from fMRI data: past findings and current issues with reference to Granger causality analysis.
    Deshpande G; Hu X
    Brain Connect; 2012; 2(5):235-45. PubMed ID: 23016794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Network analysis of whole-brain fMRI dynamics: A new framework based on dynamic communicability.
    Gilson M; Kouvaris NE; Deco G; Mangin JF; Poupon C; Lefranc S; Rivière D; Zamora-López G
    Neuroimage; 2019 Nov; 201():116007. PubMed ID: 31306771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring connectivity with large-scale Granger causality on resting-state functional MRI.
    DSouza AM; Abidin AZ; Leistritz L; Wismüller A
    J Neurosci Methods; 2017 Aug; 287():68-79. PubMed ID: 28629720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data.
    Wu GR; Liao W; Stramaglia S; Ding JR; Chen H; Marinazzo D
    Med Image Anal; 2013 Apr; 17(3):365-74. PubMed ID: 23422254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Effective Connectivity using Physiologically informed Dynamic Causal Model with Recurrent Units: A functional Magnetic Resonance Imaging simulation study.
    Nag S; Uludag K
    Front Hum Neurosci; 2023; 17():1001848. PubMed ID: 36936613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Causal connectivity measures for pulse-output network reconstruction: Analysis and applications.
    Tian ZK; Chen K; Li S; McLaughlin DW; Zhou D
    Proc Natl Acad Sci U S A; 2024 Apr; 121(14):e2305297121. PubMed ID: 38551842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered attention networks and DMN in refractory epilepsy: A resting-state functional and causal connectivity study.
    Jiang LW; Qian RB; Fu XM; Zhang D; Peng N; Niu CS; Wang YH
    Epilepsy Behav; 2018 Nov; 88():81-86. PubMed ID: 30243110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Causal mapping of emotion networks in the human brain: Framework and initial findings.
    Dubois J; Oya H; Tyszka JM; Howard M; Eberhardt F; Adolphs R
    Neuropsychologia; 2020 Aug; 145():106571. PubMed ID: 29146466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring a Cognitive Architecture from Multitask Neuroimaging Data: A Data-Driven Test of the Common Model of Cognition Using Granger Causality.
    Hake HS; Sibert C; Stocco A
    Top Cogn Sci; 2022 Oct; 14(4):845-859. PubMed ID: 36129911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constructing fMRI connectivity networks: a whole brain functional parcellation method for node definition.
    Maggioni E; Tana MG; Arrigoni F; Zucca C; Bianchi AM
    J Neurosci Methods; 2014 May; 228():86-99. PubMed ID: 24675050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyzing the connectivity between regions of interest: an approach based on cluster Granger causality for fMRI data analysis.
    Sato JR; Fujita A; Cardoso EF; Thomaz CE; Brammer MJ; Amaro E
    Neuroimage; 2010 Oct; 52(4):1444-55. PubMed ID: 20472076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered Granger causality connectivity within motor-related regions of patients with Parkinson's disease: a resting-state fMRI study.
    Hao L; Sheng Z; Ruijun W; Kun HZ; Peng Z; Yu H
    Neuroradiology; 2020 Jan; 62(1):63-69. PubMed ID: 31773188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding Task-Specific Cognitive States with Slow, Directed Functional Networks in the Human Brain.
    Ajmera S; Jain H; Sundaresan M; Sridharan D
    eNeuro; 2020; 7(4):. PubMed ID: 32265196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construct validation of a DCM for resting state fMRI.
    Razi A; Kahan J; Rees G; Friston KJ
    Neuroimage; 2015 Feb; 106():1-14. PubMed ID: 25463471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping the after-effects of theta burst stimulation on the human auditory cortex with functional imaging.
    Andoh J; Zatorre RJ
    J Vis Exp; 2012 Sep; (67):e3985. PubMed ID: 23007549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deriving causal relationships in resting-state functional connectivity using SSFO-based optogenetic fMRI.
    Han X; Cramer SR; Zhang N
    J Neural Eng; 2022 Nov; 19(6):. PubMed ID: 36301683
    [No Abstract]   [Full Text] [Related]  

  • 18. A conditional Granger causality model approach for group analysis in functional magnetic resonance imaging.
    Zhou Z; Wang X; Klahr NJ; Liu W; Arias D; Liu H; von Deneen KM; Wen Y; Lu Z; Xu D; Liu Y
    Magn Reson Imaging; 2011 Apr; 29(3):418-33. PubMed ID: 21232892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting individual brain functional connectivity using a Bayesian hierarchical model.
    Dai T; Guo Y;
    Neuroimage; 2017 Feb; 147():772-787. PubMed ID: 27915121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of MCI using optimal sparse MAR modeled effective connectivity networks.
    Wee CY; Li Y; Jie B; Peng ZW; Shen D
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):319-327. PubMed ID: 24579156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.