BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 33679365)

  • 1. Trends in Haptic Communication of Human-Human Dyads: Toward Natural Human-Robot Co-manipulation.
    Jensen SW; Salmon JL; Killpack MD
    Front Neurorobot; 2021; 15():626074. PubMed ID: 33679365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human-robot planar co-manipulation of extended objects: data-driven models and control from human-human dyads.
    Mielke E; Townsend E; Wingate D; Salmon JL; Killpack MD
    Front Neurorobot; 2024; 18():1291694. PubMed ID: 38410142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reference Trajectory Reshaping Optimization and Control of Robotic Exoskeletons for Human-Robot Co-Manipulation.
    Wu X; Li Z; Kan Z; Gao H
    IEEE Trans Cybern; 2020 Aug; 50(8):3740-3751. PubMed ID: 31484148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards Haptic-Based Dual-Arm Manipulation.
    Turlapati SH; Campolo D
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human-Human Hand Interactions Aid Balance During Walking by Haptic Communication.
    Wu M; Drnach L; Bong SM; Song YS; Ting LH
    Front Robot AI; 2021; 8():735575. PubMed ID: 34805289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual Arm Co-Manipulation Architecture with Enhanced Human-Robot Communication for Large Part Manipulation.
    Ibarguren A; Eimontaite I; Outón JL; Fletcher S
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33137977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of sensory substitution on suture manipulation forces for surgical teleoperation.
    Kitagawa M; Dokko D; Okamura AM; Bethea BT; Yuh DD
    Stud Health Technol Inform; 2004; 98():157-63. PubMed ID: 15544263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Haptic-Guided Teleoperation of a 7-DoF Collaborative Robot Arm With an Identical Twin Master.
    Singh J; Srinivasan AR; Neumann G; Kucukyilmaz A
    IEEE Trans Haptics; 2020; 13(1):246-252. PubMed ID: 32012028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a Robotic Colonoscopic Manipulation System, Using Haptic Feedback Algorithm.
    Woo J; Choi JH; Seo JT; Kim TI; Yi BJ
    Yonsei Med J; 2017 Jan; 58(1):139-143. PubMed ID: 27873506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proprioceptive Estimation of Forces Using Underactuated Fingers for Robot-Initiated pHRI.
    Ballesteros J; Pastor F; Gómez-De-Gabriel JM; Gandarias JM; García-Cerezo AJ; Urdiales C
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32443547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Handover Control for Human-Robot and Robot-Robot Collaboration.
    Costanzo M; De Maria G; Natale C
    Front Robot AI; 2021; 8():672995. PubMed ID: 34026858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A robot for overground physical human-robot interaction experiments.
    Regmi S; Burns D; Song YS
    PLoS One; 2022; 17(11):e0276980. PubMed ID: 36355780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of sensory substitution on suture-manipulation forces for robotic surgical systems.
    Kitagawa M; Dokko D; Okamura AM; Yuh DD
    J Thorac Cardiovasc Surg; 2005 Jan; 129(1):151-8. PubMed ID: 15632837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trends of Human-Robot Collaboration in Industry Contexts: Handover, Learning, and Metrics.
    Castro A; Silva F; Santos V
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34203766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Haptic Feature Set for the Classification of Interactive Motor Behaviors in Collaborative Object Transfer.
    Al-Saadi Z; Sirintuna D; Kucukyilmaz A; Basdogan C
    IEEE Trans Haptics; 2021; 14(2):384-395. PubMed ID: 33108290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of haptic feedback for the integration of intentions in shared task execution.
    Groten R; Feth D; Klatzky RL; Peer A
    IEEE Trans Haptics; 2013; 6(1):94-105. PubMed ID: 24808271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human-Robot Team Interaction Through Wearable Haptics for Cooperative Manipulation.
    Music S; Salvietti G; Dohmann PBG; Chinello F; Prattichizzo D; Hirche S
    IEEE Trans Haptics; 2019; 12(3):350-362. PubMed ID: 31180872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
    Hu Z; Yoon CH; Park SB; Jo YH
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive Human Force Scaling via Admittance Control for Physical Human-Robot Interaction.
    Hamad YM; Aydin Y; Basdogan C
    IEEE Trans Haptics; 2021; 14(4):750-761. PubMed ID: 33826517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-carrying an object by robot in cooperation with humans using visual and force sensing.
    Yu X; Zhang S; Liu Y; Li B; Ma Y; Min G
    Philos Trans A Math Phys Eng Sci; 2021 Oct; 379(2207):20200373. PubMed ID: 34398646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.