These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 33679365)

  • 21. Human-Human Hand Interactions Aid Balance During Walking by Haptic Communication.
    Wu M; Drnach L; Bong SM; Song YS; Ting LH
    Front Robot AI; 2021; 8():735575. PubMed ID: 34805289
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dual Arm Co-Manipulation Architecture with Enhanced Human-Robot Communication for Large Part Manipulation.
    Ibarguren A; Eimontaite I; Outón JL; Fletcher S
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33137977
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human-Human Interaction Forces and Interlimb Coordination During Side-by-Side Walking With Hand Contact.
    Sylos-Labini F; d'Avella A; Lacquaniti F; Ivanenko Y
    Front Physiol; 2018; 9():179. PubMed ID: 29563883
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactive locomotion: Investigation and modeling of physically-paired humans while walking.
    Lanini J; Duburcq A; Razavi H; Le Goff CG; Ijspeert AJ
    PLoS One; 2017; 12(9):e0179989. PubMed ID: 28877161
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Communication and Inference of Intended Movement Direction during Human-Human Physical Interaction.
    Mojtahedi K; Whitsell B; Artemiadis P; Santello M
    Front Neurorobot; 2017; 11():21. PubMed ID: 28450834
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vision adds to haptics when dyads perform a whole-body joint balance task.
    Eils E; Cañal-Bruland R; Sieverding L; de Lussanet MHE; Zentgraf K
    Exp Brain Res; 2017 Jul; 235(7):2089-2102. PubMed ID: 28386712
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Small forces that differ with prior motor experience can communicate movement goals during human-human physical interaction.
    Sawers A; Bhattacharjee T; McKay JL; Hackney ME; Kemp CC; Ting LH
    J Neuroeng Rehabil; 2017 Jan; 14(1):8. PubMed ID: 28143521
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physical Collaboration of Human-Human and Human-Robot Teams.
    Reed KB; Peshkin MA
    IEEE Trans Haptics; 2008; 1(2):108-120. PubMed ID: 27788067
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intention recognition for dynamic role exchange in haptic collaboration.
    Kucukyilmaz A; Sezgin TM; Basdogan C
    IEEE Trans Haptics; 2013; 6(1):58-68. PubMed ID: 24808268
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Haptically linked dyads: are two motor-control systems better than one?
    Reed K; Peshkin M; Hartmann MJ; Grabowecky M; Patton J; Vishton PM
    Psychol Sci; 2006 May; 17(5):365-6. PubMed ID: 16683920
    [No Abstract]   [Full Text] [Related]  

  • 31. Quantization of human motions and learning of accurate movements.
    Burdet E; Milner TE
    Biol Cybern; 1998 Apr; 78(4):307-18. PubMed ID: 9652080
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human control of a simple two-hand grasp.
    Reinkensmeyer DJ; Lum PS; Lehman SL
    Biol Cybern; 1992; 67(6):553-64. PubMed ID: 1472578
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Trends in Haptic Communication of Human-Human Dyads: Toward Natural Human-Robot Co-manipulation.
    Jensen SW; Salmon JL; Killpack MD
    Front Neurorobot; 2021; 15():626074. PubMed ID: 33679365
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Haptic interaction in robot-assisted endoscopic surgery: a sensorized end-effector.
    Tavakoli M; Patel RV; Moallem M
    Int J Med Robot; 2005 Jan; 1(2):53-63. PubMed ID: 17518379
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human Factors Considerations for Quantifiable Human States in Physical Human-Robot Interaction: A Literature Review.
    Abdulazeem N; Hu Y
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687837
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Need for Combining Implicit and Explicit Communication in Cooperative Robotic Systems.
    Gildert N; Millard AG; Pomfret A; Timmis J
    Front Robot AI; 2018; 5():65. PubMed ID: 33500944
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Perspectives on human-human sensorimotor interactions for the design of rehabilitation robots.
    Sawers A; Ting LH
    J Neuroeng Rehabil; 2014 Oct; 11():142. PubMed ID: 25284060
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trends and challenges in robot manipulation.
    Billard A; Kragic D
    Science; 2019 Jun; 364(6446):. PubMed ID: 31221831
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Haptics to improve task performance in people with disabilities: A review of previous studies and a guide to future research with children with disabilities.
    Jafari N; Adams KD; Tavakoli M
    J Rehabil Assist Technol Eng; 2016; 3():2055668316668147. PubMed ID: 31186908
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.