BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 33679660)

  • 21. The γ-Core Motif Peptides of AMPs from Grasses Display Inhibitory Activity against Human and Plant Pathogens.
    Slezina MP; Istomina EA; Kulakovskaya EV; Korostyleva TV; Odintsova TI
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955519
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural and functional studies of a phosphatidic acid-binding antifungal plant defensin MtDef4: identification of an RGFRRR motif governing fungal cell entry.
    Sagaram US; El-Mounadi K; Buchko GW; Berg HR; Kaur J; Pandurangi RS; Smith TJ; Shah DM
    PLoS One; 2013; 8(12):e82485. PubMed ID: 24324798
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Dynamin-Like GTPase FgSey1 Plays a Critical Role in Fungal Development and Virulence in Fusarium graminearum.
    Chong X; Wang C; Wang Y; Wang Y; Zhang L; Liang Y; Chen L; Zou S; Dong H
    Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32220839
    [No Abstract]   [Full Text] [Related]  

  • 24.
    Hao G; McCormick S; Vaughan MM; Naumann TA; Kim HS; Proctor R; Kelly A; Ward TJ
    Mol Plant Microbe Interact; 2019 Jul; 32(7):888-898. PubMed ID: 30759350
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural and biological features of a novel plant defensin from Brugmansia x candida.
    Kaewklom S; Wongchai M; Petvises S; Hanpithakphong W; Aunpad R
    PLoS One; 2018; 13(8):e0201668. PubMed ID: 30071099
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genomic Identification of the TOR Signaling Pathway as a Target of the Plant Alkaloid Antofine in the Phytopathogen Fusarium graminearum.
    Mogg C; Bonner C; Wang L; Schernthaner J; Smith M; Desveaux D; Subramaniam R
    mBio; 2019 Jun; 10(3):. PubMed ID: 31186319
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of chitosan and chitosan nanoparticles for the control of Fusarium head blight of wheat (Fusarium graminearum) in vitro and greenhouse.
    Kheiri A; Moosawi Jorf SA; Malihipour A; Saremi H; Nikkhah M
    Int J Biol Macromol; 2016 Dec; 93(Pt A):1261-1272. PubMed ID: 27664927
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Control of
    Drakopoulos D; Meca G; Torrijos R; Marty A; Kägi A; Jenny E; Forrer HR; Six J; Vogelgsang S
    Front Microbiol; 2020; 11():1595. PubMed ID: 32849332
    [No Abstract]   [Full Text] [Related]  

  • 29. Metabolomics deciphers the host resistance mechanisms in wheat cultivar Sumai-3, against trichothecene producing and non-producing isolates of Fusarium graminearum.
    Gunnaiah R; Kushalappa AC
    Plant Physiol Biochem; 2014 Oct; 83():40-50. PubMed ID: 25084325
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of Botanicals to Suppress Different Stages of the Life Cycle of
    Drakopoulos D; Luz C; Torrijos R; Meca G; Weber P; Bänziger I; Voegele RT; Six J; Vogelgsang S
    Phytopathology; 2019 Dec; 109(12):2116-2123. PubMed ID: 31600112
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of validamycin in controlling Fusarium head blight caused by Fusarium graminearum: Inhibition of DON biosynthesis and induction of host resistance.
    Li J; Duan Y; Bian C; Pan X; Yao C; Wang J; Zhou M
    Pestic Biochem Physiol; 2019 Jan; 153():152-160. PubMed ID: 30744889
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioactive-guided structural optimization of 1,2,3-triazole phenylhydrazones as potential fungicides against Fusarium graminearum.
    Chen Y; Yao K; Wang K; Xiao C; Li K; Khan B; Zhao S; Yan W; Ye Y
    Pestic Biochem Physiol; 2020 Mar; 164():26-32. PubMed ID: 32284133
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fengycin Produced by
    Hanif A; Zhang F; Li P; Li C; Xu Y; Zubair M; Zhang M; Jia D; Zhao X; Liang J; Majid T; Yan J; Farzand A; Wu H; Gu Q; Gao X
    Toxins (Basel); 2019 May; 11(5):. PubMed ID: 31137632
    [No Abstract]   [Full Text] [Related]  

  • 34. Identification of putative phosphoproteins in wheat spikes induced by Fusarium graminearum.
    Ding L; Yang R; Yang G; Cao J; Li P; Zhou Y
    Planta; 2016 Mar; 243(3):719-31. PubMed ID: 26669597
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isobaric tags for relative and absolute quantification-based proteomic analysis of defense responses triggered by the fungal pathogen Fusarium graminearum in wheat.
    Wang B; Li X; Chen W; Kong L
    J Proteomics; 2019 Sep; 207():103442. PubMed ID: 31326557
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antifungal Potency and Modes of Action of a Novel Olive Tree Defensin Against Closely Related Ascomycete Fungal Pathogens.
    Li H; Velivelli SLS; Shah DM
    Mol Plant Microbe Interact; 2019 Dec; 32(12):1649-1664. PubMed ID: 31425003
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural and functional characterization of the membrane-permeabilizing activity of
    Lay FT; Ryan GF; Caria S; Phan TK; Veneer PK; White JA; Kvansakul M; Hulett MD
    FASEB J; 2019 May; 33(5):6470-6482. PubMed ID: 30794440
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA markers associated with low Fusarium head blight incidence and narrow flower opening in wheat.
    Gilsinger J; Kong L; Shen X; Ohm H
    Theor Appl Genet; 2005 May; 110(7):1218-25. PubMed ID: 15750825
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of Three
    Hao G; McCormick S; Usgaard T; Tiley H; Vaughan MM
    Front Plant Sci; 2020; 11():579553. PubMed ID: 33329641
    [No Abstract]   [Full Text] [Related]  

  • 40. Involvement of the Fusarium graminearum cerato-platanin proteins in fungal growth and plant infection.
    Quarantin A; Glasenapp A; Schäfer W; Favaron F; Sella L
    Plant Physiol Biochem; 2016 Dec; 109():220-229. PubMed ID: 27744264
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.