These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Genotyping by Sequencing in Almond: SNP Discovery, Linkage Mapping, and Marker Design. Goonetilleke SN; March TJ; Wirthensohn MG; Arús P; Walker AR; Mather DE G3 (Bethesda); 2018 Jan; 8(1):161-172. PubMed ID: 29141988 [TBL] [Abstract][Full Text] [Related]
23. Genetic control of pear rootstock-induced dwarfing and precocity is linked to a chromosomal region syntenic to the apple Dw1 loci. Knäbel M; Friend AP; Palmer JW; Diack R; Wiedow C; Alspach P; Deng C; Gardiner SE; Tustin DS; Schaffer R; Foster T; Chagné D BMC Plant Biol; 2015 Sep; 15():230. PubMed ID: 26394845 [TBL] [Abstract][Full Text] [Related]
25. Construction of High Density Sweet Cherry (Prunus avium L.) Linkage Maps Using Microsatellite Markers and SNPs Detected by Genotyping-by-Sequencing (GBS). Guajardo V; Solís S; Sagredo B; Gainza F; Muñoz C; Gasic K; Hinrichsen P PLoS One; 2015; 10(5):e0127750. PubMed ID: 26011256 [TBL] [Abstract][Full Text] [Related]
26. Differential induction of phenylalanine ammonia-lyase gene expression in response to in vitro callus unions of Prunus spp. Pina A; Errea P J Plant Physiol; 2008 May; 165(7):705-14. PubMed ID: 17910896 [TBL] [Abstract][Full Text] [Related]
27. QTL mapping for fruit quality in Citrus using DArTseq markers. Curtolo M; Cristofani-Yaly M; Gazaffi R; Takita MA; Figueira A; Machado MA BMC Genomics; 2017 Apr; 18(1):289. PubMed ID: 28403819 [TBL] [Abstract][Full Text] [Related]
28. Construction and comparative analyses of highly dense linkage maps of two sweet cherry intra-specific progenies of commercial cultivars. Klagges C; Campoy JA; Quero-García J; Guzmán A; Mansur L; Gratacós E; Silva H; Rosyara UR; Iezzoni A; Meisel LA; Dirlewanger E PLoS One; 2013; 8(1):e54743. PubMed ID: 23382953 [TBL] [Abstract][Full Text] [Related]
29. An SNP-based saturated genetic map and QTL analysis of fruit-related traits in Zucchini using Genotyping-by-sequencing. Montero-Pau J; Blanca J; Esteras C; Martínez-Pérez EM; Gómez P; Monforte AJ; Cañizares J; Picó B BMC Genomics; 2017 Jan; 18(1):94. PubMed ID: 28100189 [TBL] [Abstract][Full Text] [Related]
30. Optimizing Production in the New Generation of Apricot Cultivars: Self-incompatibility, Herrera S; Lora J; Hormaza JI; Herrero M; Rodrigo J Front Plant Sci; 2018; 9():527. PubMed ID: 29755489 [TBL] [Abstract][Full Text] [Related]
31. Detection of Growth-Related Quantitative Trait Loci and High-Resolution Genetic Linkage Maps Using Simple Sequence Repeat Markers in the Kelp Grouper (Epinephelus bruneus). Kessuwan K; Kubota S; Liu Q; Sano M; Okamoto N; Sakamoto T; Yamashita H; Nakamura Y; Ozaki A Mar Biotechnol (NY); 2016 Feb; 18(1):57-84. PubMed ID: 26511529 [TBL] [Abstract][Full Text] [Related]
32. Construction of high-density genetic linkage map and mapping quantitative trait loci (QTL) for flowering time in autotetraploid alfalfa (Medicago sativa L.) using genotyping by sequencing. Zhang F; Kang J; Long R; Yu LX; Sun Y; Wang Z; Zhao Z; Zhang T; Yang Q Plant Genome; 2020 Nov; 13(3):e20045. PubMed ID: 33217205 [TBL] [Abstract][Full Text] [Related]
33. Development of an HRMA-Based Marker Assisted Selection (MAS) Approach for Cost-Effective Genotyping of Orlando Marchesano BM; Chiozzotto R; Baccichet I; Bassi D; Cirilli M Genes (Basel); 2022 Mar; 13(3):. PubMed ID: 35328101 [TBL] [Abstract][Full Text] [Related]
34. Identification of Self-Incompatibility Alleles by Specific PCR Analysis and Herrera S; Rodrigo J; Hormaza JI; Lora J Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30445779 [TBL] [Abstract][Full Text] [Related]
35. High-density genetic map construction and QTLs identification for plant height in white jute (Corchorus capsularis L.) using specific locus amplified fragment (SLAF) sequencing. Tao A; Huang L; Wu G; Afshar RK; Qi J; Xu J; Fang P; Lin L; Zhang L; Lin P BMC Genomics; 2017 May; 18(1):355. PubMed ID: 28482802 [TBL] [Abstract][Full Text] [Related]
36. Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). Fan S; Bielenberg DG; Zhebentyayeva TN; Reighard GL; Okie WR; Holland D; Abbott AG New Phytol; 2010 Mar; 185(4):917-30. PubMed ID: 20028471 [TBL] [Abstract][Full Text] [Related]
37. High-density genetic linkage map construction and cane cold hardiness QTL mapping for Vitis based on restriction site-associated DNA sequencing. Su K; Xing H; Guo Y; Zhao F; Liu Z; Li K; Li Y; Guo X BMC Genomics; 2020 Jun; 21(1):419. PubMed ID: 32571215 [TBL] [Abstract][Full Text] [Related]
38. Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max. Li B; Tian L; Zhang J; Huang L; Han F; Yan S; Wang L; Zheng H; Sun J BMC Genomics; 2014 Dec; 15(1):1086. PubMed ID: 25494922 [TBL] [Abstract][Full Text] [Related]
39. Resistance to Plum Pox Virus (PPV) in apricot (Prunus armeniaca L.) is associated with down-regulation of two MATHd genes. Zuriaga E; Romero C; Blanca JM; Badenes ML BMC Plant Biol; 2018 Jan; 18(1):25. PubMed ID: 29374454 [TBL] [Abstract][Full Text] [Related]
40. An AFLP and RFLP linkage map and quantitative trait locus (QTL) analysis of growth traits in Salix. Tsarouhas V; Gullberg U; Lagercrantz U Theor Appl Genet; 2002 Aug; 105(2-3):277-288. PubMed ID: 12582530 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]