BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 33680575)

  • 1. DisCoVering potential candidates of RNAi-based therapy for COVID-19 using computational methods.
    Rohani N; Ahmadi Moughari F; Eslahchi C
    PeerJ; 2021; 9():e10505. PubMed ID: 33680575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational prediction of potential siRNA and human miRNA sequences to silence orf1ab associated genes for future therapeutics against SARS-CoV-2.
    Hasan M; Ashik AI; Chowdhury MB; Tasnim AT; Nishat ZS; Hossain T; Ahmed S
    Inform Med Unlocked; 2021; 24():100569. PubMed ID: 33846694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetic Regulator miRNA Pattern Differences Among SARS-CoV, SARS-CoV-2, and SARS-CoV-2 World-Wide Isolates Delineated the Mystery Behind the Epic Pathogenicity and Distinct Clinical Characteristics of Pandemic COVID-19.
    Khan MA; Sany MRU; Islam MS; Islam ABMMK
    Front Genet; 2020; 11():765. PubMed ID: 32765592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CoronaVR: A Computational Resource and Analysis of Epitopes and Therapeutics for Severe Acute Respiratory Syndrome Coronavirus-2.
    Gupta AK; Khan MS; Choudhury S; Mukhopadhyay A; Sakshi ; Rastogi A; Thakur A; Kumari P; Kaur M; Shalu ; Saini C; Sapehia V; Barkha ; Patel PK; Bhamare KT; Kumar M
    Front Microbiol; 2020; 11():1858. PubMed ID: 32849449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Analysis of Targeting SARS-CoV-2, Viral Entry Proteins ACE2 and TMPRSS2, and Interferon Genes by Host MicroRNAs.
    Pierce JB; Simion V; Icli B; Pérez-Cremades D; Cheng HS; Feinberg MW
    Genes (Basel); 2020 Nov; 11(11):. PubMed ID: 33207533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SARS-CoV infection crosstalk with human host cell noncoding-RNA machinery: An in-silico approach.
    Yousefi H; Poursheikhani A; Bahmanpour Z; Vatanmakanian M; Taheri M; Mashouri L; Alahari SK
    Biomed Pharmacother; 2020 Oct; 130():110548. PubMed ID: 33475497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tripartite Combination of Candidate Pandemic Mitigation Agents: Vitamin D, Quercetin, and Estradiol Manifest Properties of Medicinal Agents for Targeted Mitigation of the COVID-19 Pandemic Defined by Genomics-Guided Tracing of SARS-CoV-2 Targets in Human Cells.
    Glinsky GV
    Biomedicines; 2020 May; 8(5):. PubMed ID: 32455629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational analysis of microRNA-mediated interactions in SARS-CoV-2 infection.
    Saçar Demirci MD; Adan A
    PeerJ; 2020; 8():e9369. PubMed ID: 32547891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential use of noncoding RNAs and innovative therapeutic strategies to target the 5'UTR of SARS-CoV-2.
    Baldassarre A; Paolini A; Bruno SP; Felli C; Tozzi AE; Masotti A
    Epigenomics; 2020 Aug; 12(15):1349-1361. PubMed ID: 32875809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dataset of mutational analysis, miRNAs targeting SARS-CoV-2 genes and host gene expression in SARS-CoV and SARS-CoV-2 infections.
    Sardar R; Satish D; Birla S; Gupta D
    Data Brief; 2020 Oct; 32():106207. PubMed ID: 32864402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathogenesis-directed therapy of 2019 novel coronavirus disease.
    Stratton CW; Tang YW; Lu H
    J Med Virol; 2021 Mar; 93(3):1320-1342. PubMed ID: 33073355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. To accelerate the Zika beat: Candidate design for RNA interference-based therapy.
    Giulietti M; Righetti A; Cianfruglia L; Šabanović B; Armeni T; Principato G; Piva F
    Virus Res; 2018 Aug; 255():133-140. PubMed ID: 30031046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. COVID-19 (Novel Coronavirus 2019) - recent trends.
    Kannan S; Shaik Syed Ali P; Sheeza A; Hemalatha K
    Eur Rev Med Pharmacol Sci; 2020 Feb; 24(4):2006-2011. PubMed ID: 32141569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroRNAs and Long Non-Coding RNAs as Potential Candidates to Target Specific Motifs of SARS-CoV-2.
    Natarelli L; Parca L; Mazza T; Weber C; Virgili F; Fratantonio D
    Noncoding RNA; 2021 Feb; 7(1):. PubMed ID: 33670580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of Potential RNAi (miRNA and siRNA) Molecules for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Gene Silencing by Computational Method.
    Nur SM; Hasan MA; Amin MA; Hossain M; Sharmin T
    Interdiscip Sci; 2015 Sep; 7(3):257-65. PubMed ID: 26223545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a Fluorescence-Based, High-Throughput SARS-CoV-2 3CL
    Froggatt HM; Heaton BE; Heaton NS
    J Virol; 2020 Oct; 94(22):. PubMed ID: 32843534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viroinformatics-Based Analysis of SARS-CoV-2 Core Proteins for Potential Therapeutic Targets.
    Agrawal L; Poullikkas T; Eisenhower S; Monsanto C; Bakku RK; Chen MH; Kalra RS
    Antibodies (Basel); 2021 Jan; 10(1):. PubMed ID: 33440681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global cataloguing of variations in untranslated regions of viral genome and prediction of key host RNA binding protein-microRNA interactions modulating genome stability in SARS-CoV-2.
    Mukherjee M; Goswami S
    PLoS One; 2020; 15(8):e0237559. PubMed ID: 32780783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential anti-SARS-CoV-2 drug candidates identified through virtual screening of the ChEMBL database for compounds that target the main coronavirus protease.
    Tsuji M
    FEBS Open Bio; 2020 Jun; 10(6):995-1004. PubMed ID: 32374074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SMRI: A New Method for siRNA Design for COVID-19 Therapy.
    Chen MX; Zhu XD; Zhang H; Liu Z; Liu YN
    J Comput Sci Technol; 2022; 37(4):991-1002. PubMed ID: 35992496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.