These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 3368119)

  • 1. The pineal gland of the Mongolian gerbil: nocturnal increase of electrical activity.
    Stehle J; Reuss S
    Neurosci Lett; 1988 Mar; 86(2):173-6. PubMed ID: 3368119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological characterization of the pineal gland of golden hamsters.
    Stehle J; Reuss S; Vollrath L
    Exp Brain Res; 1987; 67(1):27-32. PubMed ID: 3305060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological properties of rat pinealocytes: evidence for circadian and ultradian rhythms.
    Reuss S; Vollrath L
    Exp Brain Res; 1984; 55(3):455-61. PubMed ID: 6540710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophysiological and endocrinological aspects of aging in the rat pineal gland.
    Reuss S; Olcese J; Vollrath L
    Neuroendocrinology; 1986; 43(4):466-70. PubMed ID: 3748305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-cell recordings from chick pineal glands in vitro reveal ultradian and circadian oscillations.
    Schenda J; Vollrath L
    Cell Mol Life Sci; 2000 Nov; 57(12):1785-92. PubMed ID: 11130182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pineal gland of the gerbil, Meriones unguiculatus. III. Morphometric analysis and fluorescence histochemistry in the intact and sympathetically denervated pineal gland.
    Welsh MG; Hansen JT; Reiter RJ
    Cell Tissue Res; 1979; 204(1):111-25. PubMed ID: 527018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic field effects on pineal N-acetyltransferase activity and melatonin content in the gerbil--role of pigmentation and sex.
    Stehle J; Reuss S; Schröder H; Henschel M; Vollrath L
    Physiol Behav; 1988; 44(1):91-4. PubMed ID: 3237820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophysiological evidence for circadian rhythmicity in a mammalian pineal organ.
    Semm P; Vollrath L
    J Neural Transm; 1980; 47(3):181-90. PubMed ID: 7381454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Day-night differences in the sensitivity of adrenoceptors in the Syrian hamster pineal gland: an in vivo iontophoretic study.
    Stehle J; Reuss S; Vollrath L
    Brain Res; 1989 May; 488(1-2):275-82. PubMed ID: 2743122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beta-adrenergic stimulation prior to darkness advances the nocturnal increase of Syrian hamster pineal melatonin synthesis.
    Gonzalez-Brito A; Reiter RJ; Santana C; Menendez-Pelaez A; Guerrero JM
    Brain Res; 1988 Dec; 475(2):393-6. PubMed ID: 2850840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of light irradiance on hydroxyindole-O-methyltransferase activity, serotonin-N-acetyltransferase activity, and radioimmunoassayable melatonin levels in the pineal gland of the diurnally active Richardson's ground squirrel.
    Reiter RJ; Hurlbut EC; Brainard GC; Steinlechner S; Richardson BA
    Brain Res; 1983 Dec; 288(1-2):151-7. PubMed ID: 6686468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. mRNA transcription determines the lag period for the induction of pineal melatonin synthesis in the Syrian hamster pineal gland.
    Gonzalez-Brito A; Troiani ME; Menendez-Pelaez A; Delgado MJ; Reiter RJ
    J Cell Biochem; 1990 Sep; 44(1):55-60. PubMed ID: 2135399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thyroxine 5'-deiodinase activity in pineal gland and frontal cortex: nighttime increase and the effect of either continuous light exposure or superior cervical ganglionectomy.
    Guerrero JM; Puig-Domingo M; Reiter RJ
    Endocrinology; 1988 Jan; 122(1):236-41. PubMed ID: 3335206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the daily pattern of pineal melatonin in the Syrian hamster.
    Tamarkin L; Reppert SM; Klein DC; Pratt B; Goldman BD
    Endocrinology; 1980 Nov; 107(5):1525-9. PubMed ID: 7428680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single unit recordings in the rat pineal gland: evidence for habenulo-pineal neural connections.
    Rønnekleiv OK; Kelly MJ; Wuttke W
    Exp Brain Res; 1980; 39(2):187-92. PubMed ID: 7398816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of serotonin N-acetyltransferase activity in the retina of the Mongolian gerbil, Meriones unguiculates.
    Olcese J; Møller M
    Neurosci Lett; 1989 Jul; 102(2-3):235-40. PubMed ID: 2812503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of visual sensitivity for suppression of pineal melatonin and circadian phase-shifting in the golden hamster.
    Nelson DE; Takahashi JS
    Brain Res; 1991 Jul; 554(1-2):272-7. PubMed ID: 1933309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pineal melatonin in the Djungarian hamster: photoperiodic regulation of a circadian rhythm.
    Yellon SM; Tamarkin L; Pratt BL; Goldman BD
    Endocrinology; 1982 Aug; 111(2):488-92. PubMed ID: 7094883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Day-night changes in the ultrastructure of pinealocytes in the Syrian hamster: a quantitative study.
    Swietosławski J; Karasek M
    Endokrynol Pol; 1993; 44(1):81-7. PubMed ID: 8050394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pineal melatonin rhythm: reduction in aging Syrian hamsters.
    Reiter RJ; Richardson BA; Johnson LY; Ferguson BN; Dinh DT
    Science; 1980 Dec; 210(4476):1372-3. PubMed ID: 7434032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.