These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33681637)

  • 1. Exciton Lifetime Distributions and Population Dynamics in the FMO Protein Complex from
    Reinot T; Khmelnitskiy A; Kell A; Jassas M; Jankowiak R
    ACS Omega; 2021 Mar; 6(8):5990-6008. PubMed ID: 33681637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Spectral Density Shapes on the Excitonic Structure and Dynamics of the Fenna-Matthews-Olson Trimer from Chlorobaculum tepidum.
    Kell A; Blankenship RE; Jankowiak R
    J Phys Chem A; 2016 Aug; 120(31):6146-54. PubMed ID: 27438068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Heterogeneous Protein Environment on Excitation Energy Transfer Dynamics in the Fenna-Matthews-Olson Complex.
    Hu Z; Liu Z; Sun X
    J Phys Chem B; 2022 Nov; 126(45):9271-9287. PubMed ID: 36327977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On wavelength-dependent exciton lifetime distributions in reconstituted CP29 antenna of the photosystem II and its site-directed mutants.
    Reinot T; Jassas M; Kell A; Casazza AP; Santabarbara S; Jankowiak R
    J Chem Phys; 2021 Feb; 154(8):085101. PubMed ID: 33639775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Normal mode analysis of spectral density of FMO trimers: Intra- and intermonomer energy transfer.
    Klinger A; Lindorfer D; Müh F; Renger T
    J Chem Phys; 2020 Dec; 153(21):215103. PubMed ID: 33291900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The quantitative relationship between structure and polarized spectroscopy in the FMO complex of Prosthecochloris aestuarii: refining experiments and simulations.
    Wendling M; Przyjalgowski MA; Gülen D; Vulto SI; Aartsma TJ; van Grondelle R; van Amerongen H
    Photosynth Res; 2002; 71(1-2):99-123. PubMed ID: 16228505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the Controversial Nature of the 825 nm Exciton Band in the FMO Protein Complex.
    Kell A; Acharya K; Zazubovich V; Jankowiak R
    J Phys Chem Lett; 2014 Apr; 5(8):1450-6. PubMed ID: 26269993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On uncorrelated inter-monomer Förster energy transfer in Fenna-Matthews-Olson complexes.
    Kell A; Khmelnitskiy AY; Reinot T; Jankowiak R
    J R Soc Interface; 2019 Feb; 16(151):20180882. PubMed ID: 30958204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A permanent hole burning study of the FMO antenna complex of the green sulfur bacterium Prosthecochloris aestuarii.
    Franken EM; Neerken S; Louwe RJ; Amesz J; Aartsma TJ
    Biochemistry; 1998 Apr; 37(15):5046-51. PubMed ID: 9548735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excited state energy fluctuations in the Fenna-Matthews-Olson complex from molecular dynamics simulations with interpolated chromophore potentials.
    Kim CW; Choi B; Rhee YM
    Phys Chem Chem Phys; 2018 Jan; 20(5):3310-3319. PubMed ID: 29186231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Eighth Bacteriochlorophyll Completes the Excitation Energy Funnel in the FMO Protein.
    Schmidt Am Busch M; Müh F; El-Amine Madjet M; Renger T
    J Phys Chem Lett; 2011 Jan; 2(2):93-8. PubMed ID: 26295526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy landscape of the intact and destabilized FMO antennas from C. tepidum and the L122Q mutant: Low temperature spectroscopy and modeling study.
    Khmelnitskiy A; Kell A; Reinot T; Saer RG; Blankenship RE; Jankowiak R
    Biochim Biophys Acta Bioenerg; 2018 Mar; 1859(3):165-173. PubMed ID: 29198987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theory of the optical spectra of the bacteriochlorophyll a antenna protein trimer from Prosthecochloris aestuarii.
    Pearlstein RM
    Photosynth Res; 1992 Mar; 31(3):213-26. PubMed ID: 24408061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria.
    Adolphs J; Renger T
    Biophys J; 2006 Oct; 91(8):2778-97. PubMed ID: 16861264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Static Disorder in Excitation Energies of the Fenna-Matthews-Olson Protein: Structure-Based Theory Meets Experiment.
    Chaillet ML; Lengauer F; Adolphs J; Müh F; Fokas AS; Cole DJ; Chin AW; Renger T
    J Phys Chem Lett; 2020 Dec; 11(24):10306-10314. PubMed ID: 33227205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast Spectroscopic Investigation of Energy Transfer in Site-Directed Mutants of the Fenna-Matthews-Olson (FMO) Antenna Complex from Chlorobaculum tepidum.
    Magdaong NCM; Saer RG; Niedzwiedzki DM; Blankenship RE
    J Phys Chem B; 2017 May; 121(18):4700-4712. PubMed ID: 28422512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the influence of pigment-protein interactions on the energy transfer processes in photosynthetic membrane structures.
    Klevanik AV
    Membr Cell Biol; 1998; 12(3):319-37. PubMed ID: 10024966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multipartite entanglement in the Fenna-Matthews-Olson (FMO) pigment-protein complex.
    Thilagam A
    J Chem Phys; 2012 May; 136(17):175104. PubMed ID: 22583269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical Study of the Spectral Differences of the Fenna-Matthews-Olson Protein from Different Species and Their Mutants.
    Huai Z; Tong Z; Mei Y; Mo Y
    J Phys Chem B; 2021 Aug; 125(30):8313-8324. PubMed ID: 34314175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of Single-Point Mutations on the Excitonic Structure and Dynamics in a Fenna-Matthews-Olson Complex.
    Khmelnitskiy A; Reinot T; Jankowiak R
    J Phys Chem Lett; 2018 Jun; 9(12):3378-3386. PubMed ID: 29863366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.