BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 33681864)

  • 1. Considerations for Size, Surface Charge, Polymer Degradation, Co-Delivery, and Manufacturability in the Development of Polymeric Particle Vaccines for Infectious Diseases.
    Genito CJ; Batty CJ; Bachelder EM; Ainslie KM
    Adv Nanobiomed Res; 2021 Mar; 1(3):2000041. PubMed ID: 33681864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymeric nanoparticle vaccines to combat emerging and pandemic threats.
    Wibowo D; Jorritsma SHT; Gonzaga ZJ; Evert B; Chen S; Rehm BHA
    Biomaterials; 2021 Jan; 268():120597. PubMed ID: 33360074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradable polymeric microsphere-based vaccines and their applications in infectious diseases.
    Lin CY; Lin SJ; Yang YC; Wang DY; Cheng HF; Yeh MK
    Hum Vaccin Immunother; 2015; 11(3):650-6. PubMed ID: 25839217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymeric micro/nanoparticles: Particle design and potential vaccine delivery applications.
    Yue H; Ma G
    Vaccine; 2015 Nov; 33(44):5927-36. PubMed ID: 26263197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer-Based Nanomaterials and Applications for Vaccines and Drugs.
    Han J; Zhao D; Li D; Wang X; Jin Z; Zhao K
    Polymers (Basel); 2018 Jan; 10(1):. PubMed ID: 30966075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional polymeric nano/microparticles for surface adsorption and delivery of protein and DNA vaccines.
    Caputo A; Sparnacci K; Ensoli B; Tondelli L
    Curr Drug Deliv; 2008 Oct; 5(4):230-42. PubMed ID: 18855591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid Microparticles Show Similar Efficacy With Lipid Nanoparticles in Delivering mRNA and Preventing Cancer.
    Ji A; Xu M; Pan Y; Diao L; Ma L; Qian L; Cheng J; Liu M
    Pharm Res; 2023 Jan; 40(1):265-279. PubMed ID: 36451070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymer degradation and in vitro release of a model protein from poly(D,L-lactide-co-glycolide) nano- and microparticles.
    Panyam J; Dali MM; Sahoo SK; Ma W; Chakravarthi SS; Amidon GL; Levy RJ; Labhasetwar V
    J Control Release; 2003 Sep; 92(1-2):173-87. PubMed ID: 14499195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential of polymeric lamellar substrate particles (PLSP) as adjuvants for vaccines.
    Jabbal-Gill I; Lin W; Jenkins P; Watts P; Jimenez M; Illum L; Davis SS; Wood JM; Major D; Minor PD; Li X; Lavelle EC; Coombes AG
    Vaccine; 1999 Sep; 18(3-4):238-50. PubMed ID: 10506648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-throughput microparticle microarray platform for dendritic cell-targeting vaccines.
    Acharya AP; Clare-Salzler MJ; Keselowsky BG
    Biomaterials; 2009 Sep; 30(25):4168-77. PubMed ID: 19477505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mucosal Vaccine Delivery Using Mucoadhesive Polymer Particulate Systems.
    Cho CS; Hwang SK; Gu MJ; Kim CG; Kim SK; Ju DB; Yun CH; Kim HJ
    Tissue Eng Regen Med; 2021 Oct; 18(5):693-712. PubMed ID: 34304387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Administration routes affect the quality of immune responses: A cross-sectional evaluation of particulate antigen-delivery systems.
    Mohanan D; Slütter B; Henriksen-Lacey M; Jiskoot W; Bouwstra JA; Perrie Y; Kündig TM; Gander B; Johansen P
    J Control Release; 2010 Nov; 147(3):342-9. PubMed ID: 20727926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chitosan microparticles and nanoparticles as biocompatible delivery vehicles for peptide and protein-based immunocontraceptive vaccines.
    Chua BY; Al Kobaisi M; Zeng W; Mainwaring D; Jackson DC
    Mol Pharm; 2012 Jan; 9(1):81-90. PubMed ID: 22149016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Respiratory nanoparticle-based vaccines and challenges associated with animal models and translation.
    Renukaradhya GJ; Narasimhan B; Mallapragada SK
    J Control Release; 2015 Dec; 219():622-631. PubMed ID: 26410807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity.
    Silva AL; Soema PC; Slütter B; Ossendorp F; Jiskoot W
    Hum Vaccin Immunother; 2016 Apr; 12(4):1056-69. PubMed ID: 26752261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake and transfection with polymeric nanoparticles are dependent on polymer end-group structure, but largely independent of nanoparticle physical and chemical properties.
    Sunshine JC; Peng DY; Green JJ
    Mol Pharm; 2012 Nov; 9(11):3375-83. PubMed ID: 22970908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of injectable hydrogel properties for slow co-delivery of influenza subunit vaccine components enhance the potency of humoral immunity.
    Saouaf OM; Roth GA; Ou BS; Smith AAA; Yu AC; Gale EC; Grosskopf AK; Picece VCTM; Appel EA
    J Biomed Mater Res A; 2021 Nov; 109(11):2173-2186. PubMed ID: 33955657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunological Principles Guiding the Rational Design of Particles for Vaccine Delivery.
    Gause KT; Wheatley AK; Cui J; Yan Y; Kent SJ; Caruso F
    ACS Nano; 2017 Jan; 11(1):54-68. PubMed ID: 28075558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses.
    Oyewumi MO; Kumar A; Cui Z
    Expert Rev Vaccines; 2010 Sep; 9(9):1095-107. PubMed ID: 20822351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymeric Nanoparticles for Inhaled Vaccines.
    Al-Nemrawi NK; Darweesh RS; Al-Shriem LA; Al-Qawasmi FS; Emran SO; Khafajah AS; Abu-Dalo MA
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36298030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.