BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 33681979)

  • 1. Genetic characterization of a Sorghum bicolor multiparent mapping population emphasizing carbon-partitioning dynamics.
    Boatwright JL; Brenton ZW; Boyles RE; Sapkota S; Myers MT; Jordan KE; Dale SM; Shakoor N; Cooper EA; Morris GP; Kresovich S
    G3 (Bethesda); 2021 Apr; 11(4):. PubMed ID: 33681979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Genomic Resource for the Development, Improvement, and Exploitation of Sorghum for Bioenergy.
    Brenton ZW; Cooper EA; Myers MT; Boyles RE; Shakoor N; Zielinski KJ; Rauh BL; Bridges WC; Morris GP; Kresovich S
    Genetics; 2016 Sep; 204(1):21-33. PubMed ID: 27356613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased Power To Dissect Adaptive Traits in Global Sorghum Diversity Using a Nested Association Mapping Population.
    Bouchet S; Olatoye MO; Marla SR; Perumal R; Tesso T; Yu J; Tuinstra M; Morris GP
    Genetics; 2017 Jun; 206(2):573-585. PubMed ID: 28592497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-Wide Association Study for Major Biofuel Traits in Sorghum Using Minicore Collection.
    Rayaprolu L; Selvanayagam S; Rao DM; Gupta R; Das RR; Rathore A; Gandham P; Kiranmayee KNSU; Deshpande SP; Are AK
    Protein Pept Lett; 2021; 28(8):909-928. PubMed ID: 33588716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Association mapping by aerial drone reveals 213 genetic associations for Sorghum bicolor biomass traits under drought.
    Spindel JE; Dahlberg J; Colgan M; Hollingsworth J; Sievert J; Staggenborg SH; Hutmacher R; Jansson C; Vogel JP
    BMC Genomics; 2018 Sep; 19(1):679. PubMed ID: 30223789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissecting Adaptive Traits with Nested Association Mapping: Genetic Architecture of Inflorescence Morphology in Sorghum.
    Olatoye MO; Marla SR; Hu Z; Bouchet S; Perumal R; Morris GP
    G3 (Bethesda); 2020 May; 10(5):1785-1796. PubMed ID: 32217633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and characterization of a sorghum multi-parent advanced generation intercross (MAGIC) population for capturing diversity among seed parent gene pool.
    Kumar N; Boatwright JL; Brenton ZW; Sapkota S; Ballén-Taborda C; Myers MT; Cox WA; Jordan KE; Kresovich S; Boyles RE
    G3 (Bethesda); 2023 Apr; 13(4):. PubMed ID: 36755443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy sorghum--a genetic model for the design of C4 grass bioenergy crops.
    Mullet J; Morishige D; McCormick R; Truong S; Hilley J; McKinley B; Anderson R; Olson SN; Rooney W
    J Exp Bot; 2014 Jul; 65(13):3479-89. PubMed ID: 24958898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic Architecture of Chilling Tolerance in Sorghum Dissected with a Nested Association Mapping Population.
    Marla SR; Burow G; Chopra R; Hayes C; Olatoye MO; Felderhoff T; Hu Z; Raymundo R; Perumal R; Morris GP
    G3 (Bethesda); 2019 Dec; 9(12):4045-4057. PubMed ID: 31611346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic dissection of sorghum grain quality traits using diverse and segregating populations.
    Boyles RE; Pfeiffer BK; Cooper EA; Rauh BL; Zielinski KJ; Myers MT; Brenton Z; Rooney WL; Kresovich S
    Theor Appl Genet; 2017 Apr; 130(4):697-716. PubMed ID: 28028582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harnessing the Genetic Basis of Sorghum Biomass-Related Traits to Facilitate Bioenergy Applications.
    Yang L; Zhou Q; Sheng X; Chen X; Hua Y; Lin S; Luo Q; Yu B; Shao T; Wu Y; Chang J; Li Y; Tu M
    Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37833996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association mapping of brassinosteroid candidate genes and plant architecture in a diverse panel of Sorghum bicolor.
    Mantilla Perez MB; Zhao J; Yin Y; Hu J; Salas Fernandez MG
    Theor Appl Genet; 2014 Dec; 127(12):2645-62. PubMed ID: 25326721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ten new high-quality genome assemblies for diverse bioenergy sorghum genotypes.
    Voelker WG; Krishnan K; Chougule K; Alexander LC; Lu Z; Olson A; Ware D; Songsomboon K; Ponce C; Brenton ZW; Boatwright JL; Cooper EA
    Front Plant Sci; 2022; 13():1040909. PubMed ID: 36684744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic characterization of a core set of the USDA-NPGS Ethiopian sorghum germplasm collection: implications for germplasm conservation, evaluation, and utilization in crop improvement.
    Cuevas HE; Rosa-Valentin G; Hayes CM; Rooney WL; Hoffmann L
    BMC Genomics; 2017 Jan; 18(1):108. PubMed ID: 28125967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput genomics in sorghum: from whole-genome resequencing to a SNP screening array.
    Bekele WA; Wieckhorst S; Friedt W; Snowdon RJ
    Plant Biotechnol J; 2013 Dec; 11(9):1112-25. PubMed ID: 23919585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenotypic and molecular characterization of sweet sorghum accessions for bioenergy production.
    da Silva MJ; Pastina MM; de Souza VF; Schaffert RE; Carneiro PCS; Noda RW; Carneiro JES; Damasceno CMB; Parrella RADC
    PLoS One; 2017; 12(8):e0183504. PubMed ID: 28817696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor).
    Zheng LY; Guo XS; He B; Sun LJ; Peng Y; Dong SS; Liu TF; Jiang S; Ramachandran S; Liu CM; Jing HC
    Genome Biol; 2011 Nov; 12(11):R114. PubMed ID: 22104744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide association mapping of total antioxidant capacity, phenols, tannins, and flavonoids in a panel of Sorghum bicolor and S. bicolor × S. halepense populations using multi-locus models.
    Habyarimana E; Dall'Agata M; De Franceschi P; Baloch FS
    PLoS One; 2019; 14(12):e0225979. PubMed ID: 31805171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mating Design and Genetic Structure of a Multi-Parent Advanced Generation Intercross (MAGIC) Population of Sorghum (
    Ongom PO; Ejeta G
    G3 (Bethesda); 2018 Jan; 8(1):331-341. PubMed ID: 29150594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide association study reveals that different pathways contribute to grain quality variation in sorghum (Sorghum bicolor).
    Kimani W; Zhang LM; Wu XY; Hao HQ; Jing HC
    BMC Genomics; 2020 Jan; 21(1):112. PubMed ID: 32005168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.