These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 33681979)

  • 21. Identification of pleiotropic loci mediating structural and non-structural carbohydrate accumulation within the sorghum bioenergy association panel using high-throughput markers.
    Kumar N; Boatwright JL; Boyles RE; Brenton ZW; Kresovich S
    Front Plant Sci; 2024; 15():1356619. PubMed ID: 38481396
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Machine learning-enabled phenotyping for GWAS and TWAS of WUE traits in 869 field-grown sorghum accessions.
    Ferguson JN; Fernandes SB; Monier B; Miller ND; Allen D; Dmitrieva A; Schmuker P; Lozano R; Valluru R; Buckler ES; Gore MA; Brown PJ; Spalding EP; Leakey ADB
    Plant Physiol; 2021 Nov; 187(3):1481-1500. PubMed ID: 34618065
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mapping QTL for grain yield and other agronomic traits in post-rainy sorghum [Sorghum bicolor (L.) Moench].
    Nagaraja Reddy R; Madhusudhana R; Murali Mohan S; Chakravarthi DV; Mehtre SP; Seetharama N; Patil JV
    Theor Appl Genet; 2013 Aug; 126(8):1921-39. PubMed ID: 23649648
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A framework genetic map for Miscanthus sinensis from RNAseq-based markers shows recent tetraploidy.
    Swaminathan K; Chae WB; Mitros T; Varala K; Xie L; Barling A; Glowacka K; Hall M; Jezowski S; Ming R; Hudson M; Juvik JA; Rokhsar DS; Moose SP
    BMC Genomics; 2012 Apr; 13():142. PubMed ID: 22524439
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mapping and candidate genes associated with saccharification yield in sorghum.
    Wang YH; Acharya A; Burrell AM; Klein RR; Klein PE; Hasenstein KH
    Genome; 2013 Nov; 56(11):659-65. PubMed ID: 24299105
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Longitudinal genome-wide association study reveals early QTL that predict biomass accumulation under cold stress in sorghum.
    Agnew E; Ziegler G; Lee S; Lizárraga C; Fahlgren N; Baxter I; Mockler TC; Shakoor N
    Front Plant Sci; 2024; 15():1278802. PubMed ID: 38807776
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Common metabolic networks contribute to carbon sink strength of sorghum internodes: implications for bioenergy improvement.
    Li Y; Tu M; Feng Y; Wang W; Messing J
    Biotechnol Biofuels; 2019; 12():274. PubMed ID: 31832097
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of bioconversion quantitative trait loci in the interspecific cross Sorghum bicolor × Sorghum propinquum.
    Vandenbrink JP; Goff V; Jin H; Kong W; Paterson AH; Feltus FA
    Theor Appl Genet; 2013 Sep; 126(9):2367-80. PubMed ID: 23836384
    [TBL] [Abstract][Full Text] [Related]  

  • 29. QTL mapping for bioenergy traits in sweet sorghum recombinant inbred lines.
    Souza VF; Pereira GDS; Pastina MM; Parrella RADC; Simeone MLF; Barros BA; Noda RW; da Costa E Silva L; Magalhães JV; Schaffert RE; Garcia AAF; Damasceno CMB
    G3 (Bethesda); 2021 Oct; 11(11):. PubMed ID: 34519766
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Sorghum bicolor reference genome: improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization.
    McCormick RF; Truong SK; Sreedasyam A; Jenkins J; Shu S; Sims D; Kennedy M; Amirebrahimi M; Weers BD; McKinley B; Mattison A; Morishige DT; Grimwood J; Schmutz J; Mullet JE
    Plant J; 2018 Jan; 93(2):338-354. PubMed ID: 29161754
    [TBL] [Abstract][Full Text] [Related]  

  • 31. QTL mapping of forage yield and forage yield component traits in Sorghum bicolor x S. sudanense.
    Liu YL; Wang LH; Li JQ; Zhan QW; Zhang Q; Li JF; Fan FF
    Genet Mol Res; 2015 Apr; 14(2):3854-61. PubMed ID: 25966155
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dissecting genome-wide association signals for loss-of-function phenotypes in sorghum flavonoid pigmentation traits.
    Morris GP; Rhodes DH; Brenton Z; Ramu P; Thayil VM; Deshpande S; Hash CT; Acharya C; Mitchell SE; Buckler ES; Yu J; Kresovich S
    G3 (Bethesda); 2013 Nov; 3(11):2085-94. PubMed ID: 24048646
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-targeted Metabolomics in Diverse Sorghum Breeding Lines Indicates Primary and Secondary Metabolite Profiles Are Associated with Plant Biomass Accumulation and Photosynthesis.
    Turner MF; Heuberger AL; Kirkwood JS; Collins CC; Wolfrum EJ; Broeckling CD; Prenni JE; Jahn CE
    Front Plant Sci; 2016; 7():953. PubMed ID: 27462319
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench.
    Shiringani AL; Frisch M; Friedt W
    Theor Appl Genet; 2010 Jul; 121(2):323-36. PubMed ID: 20229249
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mapping QTLs and association of differentially expressed gene transcripts for multiple agronomic traits under different nitrogen levels in sorghum.
    Gelli M; Mitchell SE; Liu K; Clemente TE; Weeks DP; Zhang C; Holding DR; Dweikat IM
    BMC Plant Biol; 2016 Jan; 16():16. PubMed ID: 26759170
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic architecture of kernel composition in global sorghum germplasm.
    Rhodes DH; Hoffmann L; Rooney WL; Herald TJ; Bean S; Boyles R; Brenton ZW; Kresovich S
    BMC Genomics; 2017 Jan; 18(1):15. PubMed ID: 28056770
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome-Wide Association Studies of Grain Yield Components in Diverse Sorghum Germplasm.
    Boyles RE; Cooper EA; Myers MT; Brenton Z; Rauh BL; Morris GP; Kresovich S
    Plant Genome; 2016 Jul; 9(2):. PubMed ID: 27898823
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Association mapping and genomic selection for sorghum adaptation to tropical soils of Brazil in a sorghum multiparental random mating population.
    Bernardino KC; de Menezes CB; de Sousa SM; Guimarães CT; Carneiro PCS; Schaffert RE; Kochian LV; Hufnagel B; Pastina MM; Magalhaes JV
    Theor Appl Genet; 2021 Jan; 134(1):295-312. PubMed ID: 33052425
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome-wide mapping and prediction of plant architecture in a sorghum nested association mapping population.
    Olatoye MO; Hu Z; Morris GP
    Plant Genome; 2020 Nov; 13(3):e20038. PubMed ID: 33217207
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stability and genetic control of morphological, biomass and biofuel traits under temperate maritime and continental conditions in sweet sorghum (Sorghum bicolour).
    Mocoeur A; Zhang YM; Liu ZQ; Shen X; Zhang LM; Rasmussen SK; Jing HC
    Theor Appl Genet; 2015 Sep; 128(9):1685-701. PubMed ID: 25982132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.