BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 33682029)

  • 1. Who gets a license: DNA synthesis in quiescent cells re-entering the cell cycle.
    Lee PH; Osley MA
    Curr Genet; 2021 Aug; 67(4):539-543. PubMed ID: 33682029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic checkpoint deficiency during cell cycle re-entry from quiescence.
    Matson JP; House AM; Grant GD; Wu H; Perez J; Cook JG
    J Cell Biol; 2019 Jul; 218(7):2169-2184. PubMed ID: 31186278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatin structure restricts origin utilization when quiescent cells re-enter the cell cycle.
    Lee PH; Osley MA
    Nucleic Acids Res; 2021 Jan; 49(2):864-878. PubMed ID: 33367871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The consequences of differential origin licensing dynamics in distinct chromatin environments.
    Mei L; Kedziora KM; Song EA; Purvis JE; Cook JG
    Nucleic Acids Res; 2022 Sep; 50(17):9601-9620. PubMed ID: 35079814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficiency and equity in origin licensing to ensure complete DNA replication.
    Mei L; Cook JG
    Biochem Soc Trans; 2021 Nov; 49(5):2133-2141. PubMed ID: 34545932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavior of replication origins in Eukaryota - spatio-temporal dynamics of licensing and firing.
    Musiałek MW; Rybaczek D
    Cell Cycle; 2015; 14(14):2251-64. PubMed ID: 26030591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleosome occupancy as a novel chromatin parameter for replication origin functions.
    Rodriguez J; Lee L; Lynch B; Tsukiyama T
    Genome Res; 2017 Feb; 27(2):269-277. PubMed ID: 27895110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct and sequential re-replication barriers ensure precise genome duplication.
    Zhou Y; Pozo PN; Oh S; Stone HM; Cook JG
    PLoS Genet; 2020 Aug; 16(8):e1008988. PubMed ID: 32841231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Link between ORC-origin binding mechanisms and origin activation time revealed in budding yeast.
    Hoggard T; Shor E; Müller CA; Nieduszynski CA; Fox CA
    PLoS Genet; 2013; 9(9):e1003798. PubMed ID: 24068963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Rrm3 Function in Restricting DNA Replication via an Orc5-Binding Domain Is Genetically Separable from Rrm3 Function as an ATPase/Helicase in Facilitating Fork Progression.
    Syed S; Desler C; Rasmussen LJ; Schmidt KH
    PLoS Genet; 2016 Dec; 12(12):e1006451. PubMed ID: 27923055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of DNA replication licensing in a cell cycle.
    Nishitani H; Lygerou Z
    Genes Cells; 2002 Jun; 7(6):523-34. PubMed ID: 12059957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA replication licensing.
    Nishitani H; Lygerou Z
    Front Biosci; 2004 Sep; 9():2115-32. PubMed ID: 15353274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-Cycle-Dependent Chromatin Dynamics at Replication Origins.
    Li Y; Hartemink AJ; MacAlpine DM
    Genes (Basel); 2021 Dec; 12(12):. PubMed ID: 34946946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interaction networks of the budding yeast and human DNA replication-initiation proteins.
    Wu R; Amin A; Wang Z; Huang Y; Man-Hei Cheung M; Yu Z; Yang W; Liang C
    Cell Cycle; 2019; 18(6-7):723-741. PubMed ID: 30890025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA replication origins retain mobile licensing proteins.
    Sánchez H; McCluskey K; van Laar T; van Veen E; Asscher FM; Solano B; Diffley JFX; Dekker NH
    Nat Commun; 2021 Mar; 12(1):1908. PubMed ID: 33772005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleosome-directed replication origin licensing independent of a consensus DNA sequence.
    Li S; Wasserman MR; Yurieva O; Bai L; O'Donnell ME; Liu S
    Nat Commun; 2022 Aug; 13(1):4947. PubMed ID: 35999198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cdc6p-dependent loading of Mcm proteins onto pre-replicative chromatin in budding yeast.
    Donovan S; Harwood J; Drury LS; Diffley JF
    Proc Natl Acad Sci U S A; 1997 May; 94(11):5611-6. PubMed ID: 9159120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of pre-replication complex proteins during the cell division cycle.
    Prasanth SG; Méndez J; Prasanth KV; Stillman B
    Philos Trans R Soc Lond B Biol Sci; 2004 Jan; 359(1441):7-16. PubMed ID: 15065651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The contribution of dormant origins to genome stability: from cell biology to human genetics.
    Alver RC; Chadha GS; Blow JJ
    DNA Repair (Amst); 2014 Jul; 19(100):182-9. PubMed ID: 24767947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mobile origin-licensing factors confer resistance to conflicts with RNA polymerase.
    Scherr MJ; Wahab SA; Remus D; Duderstadt KE
    Cell Rep; 2022 Mar; 38(12):110531. PubMed ID: 35320708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.