BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 33682029)

  • 21. Multiple regulatory mechanisms to inhibit untimely initiation of DNA replication are important for stable genome maintenance.
    Tanaka S; Araki H
    PLoS Genet; 2011 Jun; 7(6):e1002136. PubMed ID: 21698130
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of Replication Origins.
    Marks AB; Fu H; Aladjem MI
    Adv Exp Med Biol; 2017; 1042():43-59. PubMed ID: 29357052
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Xenopus cdc7 function is dependent on licensing but not on XORC, XCdc6, or CDK activity and is required for XCdc45 loading.
    Jares P; Blow JJ
    Genes Dev; 2000 Jun; 14(12):1528-40. PubMed ID: 10859170
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The MCM complex: its role in DNA replication and implications for cancer therapy.
    Lei M
    Curr Cancer Drug Targets; 2005 Aug; 5(5):365-80. PubMed ID: 16101384
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome-wide analysis of re-replication reveals inhibitory controls that target multiple stages of replication initiation.
    Tanny RE; MacAlpine DM; Blitzblau HG; Bell SP
    Mol Biol Cell; 2006 May; 17(5):2415-23. PubMed ID: 16525018
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The replication capacity of intact mammalian nuclei in Xenopus egg extracts declines with quiescence, but the residual DNA synthesis is independent of Xenopus MCM proteins.
    Sun W; Hola M; Pedley K; Tada S; Blow JJ; Todorov IT; Kearsey SE; Brooks RF
    J Cell Sci; 2000 Feb; 113 ( Pt 4)():683-95. PubMed ID: 10652261
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Robust Replication Control Is Generated by Temporal Gaps between Licensing and Firing Phases and Depends on Degradation of Firing Factor Sld2.
    Reusswig KU; Zimmermann F; Galanti L; Pfander B
    Cell Rep; 2016 Oct; 17(2):556-569. PubMed ID: 27705801
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Orchestration of the S-phase and DNA damage checkpoint pathways by replication forks from early origins.
    Caldwell JM; Chen Y; Schollaert KL; Theis JF; Babcock GF; Newlon CS; Sanchez Y
    J Cell Biol; 2008 Mar; 180(6):1073-86. PubMed ID: 18347065
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human Mcm proteins at a replication origin during the G1 to S phase transition.
    Schaarschmidt D; Ladenburger EM; Keller C; Knippers R
    Nucleic Acids Res; 2002 Oct; 30(19):4176-85. PubMed ID: 12364596
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular Mechanism for Chromatin Regulation During MCM Loading in Mammalian Cells.
    Sugimoto N; Fujita M
    Adv Exp Med Biol; 2017; 1042():61-78. PubMed ID: 29357053
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Rix1 (Ipi1p-2p-3p) complex is a critical determinant of DNA replication licensing independent of their roles in ribosome biogenesis.
    Huo L; Wu R; Yu Z; Zhai Y; Yang X; Chan TC; Yeung JT; Kan J; Liang C
    Cell Cycle; 2012 Apr; 11(7):1325-39. PubMed ID: 22421151
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CDT1 inhibits CMG helicase in early S phase to separate origin licensing from DNA synthesis.
    Ratnayeke N; Baris Y; Chung M; Yeeles JTP; Meyer T
    Mol Cell; 2023 Jan; 83(1):26-42.e13. PubMed ID: 36608667
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of minichromosome maintenance protein 2 deficiency on the locations of DNA replication origins.
    Kunnev D; Freeland A; Qin M; Leach RW; Wang J; Shenoy RM; Pruitt SC
    Genome Res; 2015 Apr; 25(4):558-69. PubMed ID: 25762552
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of 1600 replication origins in
    Foss EJ; Lichauco C; Gatbonton-Schwager T; Gonske SJ; Lofts B; Lao U; Bedalov A
    Elife; 2024 Feb; 12():. PubMed ID: 38315095
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rif1 regulates initiation timing of late replication origins throughout the S. cerevisiae genome.
    Peace JM; Ter-Zakarian A; Aparicio OM
    PLoS One; 2014; 9(5):e98501. PubMed ID: 24879017
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Where and when to start: Regulating DNA replication origin activity in eukaryotic genomes.
    Lee CSK; Weiβ M; Hamperl S
    Nucleus; 2023 Dec; 14(1):2229642. PubMed ID: 37469113
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Is DNA sequence sufficient to specify DNA replication origins in metazoan cells?
    Biamonti G; Paixão S; Montecucco A; Peverali FA; Riva S; Falaschi A
    Chromosome Res; 2003; 11(5):403-12. PubMed ID: 12971717
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase.
    Aparicio OM; Weinstein DM; Bell SP
    Cell; 1997 Oct; 91(1):59-69. PubMed ID: 9335335
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Origins and complexes: the initiation of DNA replication.
    Bryant JA; Moore K; Aves SJ
    J Exp Bot; 2001 Feb; 52(355):193-202. PubMed ID: 11283163
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid DNA replication origin licensing protects stem cell pluripotency.
    Matson JP; Dumitru R; Coryell P; Baxley RM; Chen W; Twaroski K; Webber BR; Tolar J; Bielinsky AK; Purvis JE; Cook JG
    Elife; 2017 Nov; 6():. PubMed ID: 29148972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.