These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33682754)

  • 1. A method for enhancing speech and warning signals based on parallel convolutional neural networks in a noisy environment.
    Kang HL; Na SD; Kim MN
    Technol Health Care; 2021; 29(S1):141-152. PubMed ID: 33682754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of a Deep Recurrent Neural Network to Reduce Wind Noise: Effects on Judged Speech Intelligibility and Sound Quality.
    Keshavarzi M; Goehring T; Zakis J; Turner RE; Moore BCJ
    Trends Hear; 2018; 22():2331216518770964. PubMed ID: 29708061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lightweight deep convolutional neural network for background sound classification in speech signals.
    Dayal A; Yeduri SR; Koduru BH; Jaiswal RK; Soumya J; Srinivas MB; Pandey OJ; Cenkeramaddi LR
    J Acoust Soc Am; 2022 Apr; 151(4):2773. PubMed ID: 35461490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. End-to-End Deep Convolutional Recurrent Models for Noise Robust Waveform Speech Enhancement.
    Ullah R; Wuttisittikulkij L; Chaudhary S; Parnianifard A; Shah S; Ibrar M; Wahab FE
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Adaptive Noise Management Technologies for School-Age Children with Hearing Loss.
    Wolfe J; Duke M; Schafer E; Jones C; Rakita L
    J Am Acad Audiol; 2017 May; 28(5):415-435. PubMed ID: 28534732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speaker separation in realistic noise environments with applications to a cognitively-controlled hearing aid.
    Borgström BJ; Brandstein MS; Ciccarelli GA; Quatieri TF; Smalt CJ
    Neural Netw; 2021 Aug; 140():136-147. PubMed ID: 33765529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental Noise Classification Using Convolutional Neural Networks with Input Transform for Hearing Aids.
    Park G; Lee S
    Int J Environ Res Public Health; 2020 Mar; 17(7):. PubMed ID: 32230966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Causal speech enhancement using dynamical-weighted loss and attention encoder-decoder recurrent neural network.
    Peracha FK; Khattak MI; Salem N; Saleem N
    PLoS One; 2023; 18(5):e0285629. PubMed ID: 37167227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A lightweight speech enhancement network fusing bone- and air-conducted speech.
    Kuang K; Yang F; Yang J
    J Acoust Soc Am; 2024 Aug; 156(2):1355-1366. PubMed ID: 39185901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship Among Signal Fidelity, Hearing Loss, and Working Memory for Digital Noise Suppression.
    Arehart K; Souza P; Kates J; Lunner T; Pedersen MS
    Ear Hear; 2015; 36(5):505-16. PubMed ID: 25985016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attention-Based Joint Training of Noise Suppression and Sound Event Detection for Noise-Robust Classification.
    Son JY; Chang JH
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dysarthric Speech Enhancement Based on Convolution Neural Network.
    Wang SS; Tsao Y; Zheng WZ; Yeh HW; Li PC; Fang SH; Lai YH
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():60-64. PubMed ID: 36085875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speech enhancement based on neural networks improves speech intelligibility in noise for cochlear implant users.
    Goehring T; Bolner F; Monaghan JJ; van Dijk B; Zarowski A; Bleeck S
    Hear Res; 2017 Feb; 344():183-194. PubMed ID: 27913315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and Prediction of Speech Intelligibility at the Output of Hearing Aids in a Noisy Working Environment.
    Malrin A; Ducourneau J; Chevret P
    Noise Health; 2023; 25(118):183-194. PubMed ID: 37815080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of Novel Hearing Aids by Using Image Recognition Technology.
    Lin BS; Liu CF; Cheng CJ; Wang JJ; Liu C; Li J; Lin BS
    IEEE J Biomed Health Inform; 2019 May; 23(3):1163-1170. PubMed ID: 29994776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient two-microphone speech enhancement using basic recurrent neural network cell for hearing and hearing aids.
    Shankar N; Bhat GS; Panahi IMS
    J Acoust Soc Am; 2020 Jul; 148(1):389. PubMed ID: 32752751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speech intelligibility benefits of hearing AIDS at various input levels.
    Kuk F; Lau CC; Korhonen P; Crose B
    J Am Acad Audiol; 2015 Mar; 26(3):275-88. PubMed ID: 25751695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of hearing aid technologies on listening in an automobile.
    Wu YH; Stangl E; Bentler RA; Stanziola RW
    J Am Acad Audiol; 2013 Jun; 24(6):474-85. PubMed ID: 23886425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Binaural Steering Beamformer System for Enhancing a Moving Speech Source.
    Adiloğlu K; Kayser H; Baumgärtel RM; Rennebeck S; Dietz M; Hohmann V
    Trends Hear; 2015 Dec; 19():. PubMed ID: 26721924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the performance of hearing aids in noisy environments based on deep learning technology.
    Lai YH; Zheng WZ; Tang ST; Fang SH; Liao WH; Tsao Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():404-408. PubMed ID: 30440419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.