BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33682941)

  • 1. TGF-β1/Smad2/3 signaling pathway modulates octreotide antisecretory and antiproliferative effects in pituitary somatotroph tumor cells.
    Picech F; Sosa LD; Perez PA; Cecenarro L; Oms SR; Coca HA; De Battista JC; Gutiérrez S; Mukdsi JH; Torres AI; Petiti JP
    J Cell Physiol; 2021 Oct; 236(10):6974-6987. PubMed ID: 33682941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Somatostatin receptor subtypes mRNA in TSH-secreting pituitary adenomas: a case showing a dramatic reduction in tumor size during short octreotide treatment.
    Horiguchi K; Yamada M; Umezawa R; Satoh T; Hashimoto K; Tosaka M; Yamada S; Mori M
    Endocr J; 2007 Jun; 54(3):371-8. PubMed ID: 17420609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. cAMP/PKA-induced filamin A (FLNA) phosphorylation inhibits SST2 signal transduction in GH-secreting pituitary tumor cells.
    Peverelli E; Giardino E; Mangili F; Treppiedi D; Catalano R; Ferrante E; Sala E; Locatelli M; Lania AG; Arosio M; Spada A; Mantovani G
    Cancer Lett; 2018 Oct; 435():101-109. PubMed ID: 30098401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms and influence of octreotide-induced regulation of somatostatin receptor 2 on hepatocellular carcinoma.
    Hua YP; Yin XY; Peng BG; Li SQ; Lai JM; Liang HZ; Liang LJ
    Chemotherapy; 2009; 55(5):312-20. PubMed ID: 19590186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Somatostatin receptor (SSTR) subtype-selective analogues differentially suppress in vitro growth hormone and prolactin in human pituitary adenomas. Novel potential therapy for functional pituitary tumors.
    Shimon I; Yan X; Taylor JE; Weiss MH; Culler MD; Melmed S
    J Clin Invest; 1997 Nov; 100(9):2386-92. PubMed ID: 9410919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory effects of SOM230 on adrenocorticotropic hormone production and corticotroph tumor cell proliferation in vitro and in vivo.
    Murasawa S; Kageyama K; Sugiyama A; Ishigame N; Niioka K; Suda T; Daimon M
    Mol Cell Endocrinol; 2014 Aug; 394(1-2):37-46. PubMed ID: 25011056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vitro Head-to-Head Comparison Between Octreotide and Pasireotide in GH-Secreting Pituitary Adenomas.
    Gatto F; Feelders RA; Franck SE; van Koetsveld PM; Dogan F; Kros JM; Neggers SJCMM; van der Lely AJ; Lamberts SWJ; Ferone D; Hofland LJ
    J Clin Endocrinol Metab; 2017 Jun; 102(6):2009-2018. PubMed ID: 28323931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo and in vitro response to octreotide LAR in a TSH-secreting adenoma: characterization of somatostatin receptor expression and role of subtype 5.
    Gatto F; Barbieri F; Castelletti L; Arvigo M; Pattarozzi A; Annunziata F; Saveanu A; Minuto F; Castellan L; Zona G; Florio T; Ferone D
    Pituitary; 2011 Jun; 14(2):141-7. PubMed ID: 21086053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Somatostatin receptor sst2 decreases cell viability and hormonal hypersecretion and reverses octreotide resistance of human pituitary adenomas.
    Acunzo J; Thirion S; Roche C; Saveanu A; Gunz G; Germanetti AL; Couderc B; Cohen R; Figarella-Branger D; Dufour H; Brue T; Enjalbert A; Barlier A
    Cancer Res; 2008 Dec; 68(24):10163-70. PubMed ID: 19074883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential Effects of Somatostatin, Octreotide, and Lanreotide on Neuroendocrine Differentiation and Proliferation in Established and Primary NET Cell Lines: Possible Crosstalk with TGF-β Signaling.
    Ungefroren H; Künstner A; Busch H; Franzenburg S; Luley K; Viol F; Schrader J; Konukiewitz B; Wellner UF; Meyhöfer SM; Keck T; Marquardt JU; Lehnert H
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of somatostatin receptor subtypes (1-5) gene expression levels in somatotropinomas and correlation to in vivo hormonal and tumor volume responses to treatment with octreotide LAR.
    Taboada GF; Luque RM; Neto LV; Machado Ede O; Sbaffi BC; Domingues RC; Marcondes JB; Chimelli LM; Fontes R; Niemeyer P; de Carvalho DP; Kineman RD; Gadelha MR
    Eur J Endocrinol; 2008 Mar; 158(3):295-303. PubMed ID: 18299461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytoskeleton Protein Filamin A Is Required for Efficient Somatostatin Receptor Type 2 Internalization and Recycling through Rab5 and Rab4 Sorting Endosomes in Tumor Somatotroph Cells.
    Treppiedi D; Mangili F; Giardino E; Catalano R; Locatelli M; Lania AG; Spada A; Arosio M; Calebiro D; Mantovani G; Peverelli E
    Neuroendocrinology; 2020; 110(7-8):642-652. PubMed ID: 31574507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of chimeric molecules directed towards multiple somatostatin and dopamine receptors on inhibition of GH and prolactin secretion from GH-secreting pituitary adenomas classified as partially responsive to somatostatin analog therapy.
    Jaquet P; Gunz G; Saveanu A; Dufour H; Taylor J; Dong J; Kim S; Moreau JP; Enjalbert A; Culler MD
    Eur J Endocrinol; 2005 Jul; 153(1):135-41. PubMed ID: 15994755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of chronic octreotide treatment on GH secretory dynamics and tumor growth in rats bearing an ectopic somatotroph (GC) tumor.
    Mounier F; Bluet-Pajot MT; Viollet C; Bertherat J; Timsit J; Tannenbaum GS; Epelbaum J
    J Neuroendocrinol; 1995 Aug; 7(8):645-51. PubMed ID: 8704739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo and in vitro effects of octreotide, quinagolide and cabergoline in four hyperprolactinaemic acromegalics: correlation with somatostatin and dopamine D2 receptor scintigraphy.
    Ferone D; Pivonello R; Lastoria S; Faggiano A; Del Basso de Caro ML; Cappabianca P; Lombardi G; Colao A
    Clin Endocrinol (Oxf); 2001 Apr; 54(4):469-77. PubMed ID: 11318782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Somatostatin analogues stimulate p27 expression and inhibit the MAP kinase pathway in pituitary tumours.
    Hubina E; Nanzer AM; Hanson MR; Ciccarelli E; Losa M; Gaia D; Papotti M; Terreni MR; Khalaf S; Jordan S; Czirják S; Hanzély Z; Nagy GM; Góth MI; Grossman AB; Korbonits M
    Eur J Endocrinol; 2006 Aug; 155(2):371-9. PubMed ID: 16868153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholangiocarcinoma cells express somatostatin receptor subtype 2 and respond to octreotide treatment.
    Zhao B; Zhao H; Zhao N; Zhu XG
    J Hepatobiliary Pancreat Surg; 2002; 9(4):497-502. PubMed ID: 12483273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smad2 and Smad3 as mediators of the response of adventitial fibroblasts induced by transforming growth factor β1.
    Ren M; Wang B; Zhang J; Liu P; Lv Y; Liu G; Jiang H; Liu F
    Mol Med Rep; 2011; 4(3):561-7. PubMed ID: 21468608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PPM1A suppresses the proliferation and invasiveness of RCC cells via Smad2/3 signaling inhibition.
    Hong Y; Gong L; Yu B; Dong Y
    J Recept Signal Transduct Res; 2021 Jun; 41(3):245-254. PubMed ID: 32878540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The expression of TGF-β1, Smad3, phospho-Smad3 and Smad7 is correlated with the development and invasion of nonfunctioning pituitary adenomas.
    Zhenye L; Chuzhong L; Youtu W; Xiaolei L; Lei C; Lichuan H; Hongyun W; Yonggang W; Fei W; Yazhuo Z
    J Transl Med; 2014 Mar; 12():71. PubMed ID: 24636138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.