BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 33683128)

  • 1. Depletion of the Lubricant from Lubricant-Infused Surfaces due to an Air/Water Interface.
    Peppou-Chapman S; Neto C
    Langmuir; 2021 Mar; 37(10):3025-3037. PubMed ID: 33683128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic contact angle measurements on lubricant infused surfaces.
    Kim D; Lee M; Kim JH; Lee J
    J Colloid Interface Sci; 2021 Mar; 586():647-654. PubMed ID: 33208248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disjoining pressure analysis of the lubricant nanofilm stability of liquid-infused surface upon lubricant depletion.
    Emelyanenko KA; Emelyanenko AM; Boinovich LB
    J Colloid Interface Sci; 2022 Jul; 618():121-128. PubMed ID: 35334360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid-Infused Surfaces with Trapped Air (LISTA) for Drag Force Reduction.
    Hemeda AA; Tafreshi HV
    Langmuir; 2016 Mar; 32(12):2955-62. PubMed ID: 26977775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Life and death of liquid-infused surfaces: a review on the choice, analysis and fate of the infused liquid layer.
    Peppou-Chapman S; Hong JK; Waterhouse A; Neto C
    Chem Soc Rev; 2020 Jun; 49(11):3688-3715. PubMed ID: 32396597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping Depletion of Lubricant Films on Antibiofouling Wrinkled Slippery Surfaces.
    Peppou-Chapman S; Neto C
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33669-33677. PubMed ID: 30168715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualization and Experimental Characterization of Wrapping Layer Using Planar Laser-Induced Fluorescence.
    Xu H; Herzog JM; Zhou Y; Bashirzadeh Y; Liu A; Adera S
    ACS Nano; 2024 Feb; 18(5):4068-4076. PubMed ID: 38277478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Droplets on Lubricant-Infused Surfaces: Combination of Constant Mean Curvature Interfaces with Neumann Triangle Boundary Conditions.
    Gunjan MR; Kumar A; Raj R
    Langmuir; 2020 Mar; 36(11):2974-2983. PubMed ID: 32118441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of Nanobubbles on Lubricant-Infused Surfaces Using AFM Meniscus Force Measurements.
    Peppou-Chapman S; Vega-Sánchez C; Neto C
    Langmuir; 2022 Aug; 38(33):10234-10243. PubMed ID: 35959766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the role of infusing lubricant composition in the interfacial interactions and properties of slippery surface.
    Wang J; Wang Y; Zhang K; Liu X; Zhang S; Wang D; Xie L
    J Colloid Interface Sci; 2024 Apr; 659():289-298. PubMed ID: 38176238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overview of the development of slippery surfaces: Lubricants from presence to absence.
    Wang X; Huang J; Guo Z
    Adv Colloid Interface Sci; 2022 Mar; 301():102602. PubMed ID: 35085985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous Charging of Drops on Lubricant-Infused Surfaces.
    Li S; Bista P; Weber SAL; Kappl M; Butt HJ
    Langmuir; 2022 Oct; 38(41):12610-12616. PubMed ID: 36190842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrathin Lubricant-Infused Vertical Graphene Nanoscaffolds for High-Performance Dropwise Condensation.
    Tripathy A; Lam CWE; Davila D; Donati M; Milionis A; Sharma CS; Poulikakos D
    ACS Nano; 2021 Sep; 15(9):14305-14315. PubMed ID: 34399576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studying Liquid-Infused Surfaces with Affordable Surface Features Infiltrated with Various Lubricants from Corrosion, Biofouling, and Fluid Drag Viewpoints.
    Pakzad H; Nouri-Borujerdi A; Moosavi A
    Langmuir; 2023 Aug; 39(31):10978-10992. PubMed ID: 37489709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct observation of drops on slippery lubricant-infused surfaces.
    Schellenberger F; Xie J; Encinas N; Hardy A; Klapper M; Papadopoulos P; Butt HJ; Vollmer D
    Soft Matter; 2015 Oct; 11(38):7617-26. PubMed ID: 26291621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slippery lubricant-infused silica nanoparticulate film processing for anti-biofouling applications.
    Li Sip YY; Jacobs A; Morales A; Sun M; Roberson LB; Hummerick ME; Roy H; Kik P; Zhai L
    J Appl Biomater Funct Mater; 2023; 21():22808000231184688. PubMed ID: 37680075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antiwetting and Antifouling Performances of Different Lubricant-Infused Slippery Surfaces.
    Cao Y; Jana S; Tan X; Bowen L; Zhu Y; Dawson J; Han R; Exton J; Liu H; McHale G; Jakubovics NS; Chen J
    Langmuir; 2020 Nov; 36(45):13396-13407. PubMed ID: 33141589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity.
    Wong TS; Kang SH; Tang SK; Smythe EJ; Hatton BD; Grinthal A; Aizenberg J
    Nature; 2011 Sep; 477(7365):443-7. PubMed ID: 21938066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bubble-Induced Rupture of Droplets on Hydrophobic and Lubricant-Impregnated Surfaces.
    Mullagura HN; Dash S
    Langmuir; 2020 Aug; 36(30):8858-8864. PubMed ID: 32614589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.