These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
348 related articles for article (PubMed ID: 33683134)
1. Overproduction of α-Farnesene in Wang J; Jiang W; Liang C; Zhu L; Li Y; Mo Q; Xu S; Chu A; Zhang L; Ding Z; Shi G J Agric Food Chem; 2021 Mar; 69(10):3103-3113. PubMed ID: 33683134 [TBL] [Abstract][Full Text] [Related]
2. Enzyme and Metabolic Engineering Strategies for Biosynthesis of α-Farnesene in Wang S; Zhan C; Nie S; Tian D; Lu J; Wen M; Qiao J; Zhu H; Caiyin Q J Agric Food Chem; 2023 Aug; 71(33):12452-12461. PubMed ID: 37574876 [TBL] [Abstract][Full Text] [Related]
3. Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene α-santalene in a fed-batch mode. Scalcinati G; Knuf C; Partow S; Chen Y; Maury J; Schalk M; Daviet L; Nielsen J; Siewers V Metab Eng; 2012 Mar; 14(2):91-103. PubMed ID: 22330799 [TBL] [Abstract][Full Text] [Related]
4. Engineering Wang J; Li Y; Jiang W; Hu J; Gu Z; Xu S; Zhang L; Ding Z; Chen W; Shi G J Agric Food Chem; 2023 Jun; 71(25):9804-9814. PubMed ID: 37311098 [TBL] [Abstract][Full Text] [Related]
5. Engineering the oleaginous yeast Yarrowia lipolytica for β-farnesene overproduction. Shi T; Li Y; Zhu L; Tong Y; Yang J; Fang Y; Wang M; Zhang J; Jiang Y; Yang S Biotechnol J; 2021 Jul; 16(7):e2100097. PubMed ID: 33938153 [TBL] [Abstract][Full Text] [Related]
6. Enhancing Geranylgeraniol Production by Metabolic Engineering and Utilization of Isoprenol as a Substrate in Wang J; Zhu L; Li Y; Xu S; Jiang W; Liang C; Fang Y; Chu A; Zhang L; Ding Z; Shi G J Agric Food Chem; 2021 Apr; 69(15):4480-4489. PubMed ID: 33823596 [TBL] [Abstract][Full Text] [Related]
7. Enhancing fluxes through the mevalonate pathway in Saccharomyces cerevisiae by engineering the HMGR and β-alanine metabolism. Lu S; Zhou C; Guo X; Du Z; Cheng Y; Wang Z; He X Microb Biotechnol; 2022 Aug; 15(8):2292-2306. PubMed ID: 35531990 [TBL] [Abstract][Full Text] [Related]
8. Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae. Jiang GZ; Yao MD; Wang Y; Zhou L; Song TQ; Liu H; Xiao WH; Yuan YJ Metab Eng; 2017 May; 41():57-66. PubMed ID: 28359705 [TBL] [Abstract][Full Text] [Related]
9. Alpha-Terpineol production from an engineered Saccharomyces cerevisiae cell factory. Zhang C; Li M; Zhao GR; Lu W Microb Cell Fact; 2019 Sep; 18(1):160. PubMed ID: 31547812 [TBL] [Abstract][Full Text] [Related]
10. Overproduction of geranylgeraniol by metabolically engineered Saccharomyces cerevisiae. Tokuhiro K; Muramatsu M; Ohto C; Kawaguchi T; Obata S; Muramoto N; Hirai M; Takahashi H; Kondo A; Sakuradani E; Shimizu S Appl Environ Microbiol; 2009 Sep; 75(17):5536-43. PubMed ID: 19592534 [TBL] [Abstract][Full Text] [Related]
11. Production of farnesene and santalene by Saccharomyces cerevisiae using fed-batch cultivations with RQ-controlled feed. Tippmann S; Scalcinati G; Siewers V; Nielsen J Biotechnol Bioeng; 2016 Jan; 113(1):72-81. PubMed ID: 26108688 [TBL] [Abstract][Full Text] [Related]
12. Significantly Enhanced Production of Patchoulol in Metabolically Engineered Ma B; Liu M; Li ZH; Tao X; Wei DZ; Wang FQ J Agric Food Chem; 2019 Aug; 67(31):8590-8598. PubMed ID: 31287301 [TBL] [Abstract][Full Text] [Related]
13. Pathway engineering and medium optimization for α-farnesene biosynthesis in oleaginous yeast Yarrowia lipolytica. Liu SC; Liu Z; Wei LJ; Hua Q J Biotechnol; 2020 Aug; 319():74-81. PubMed ID: 32533992 [TBL] [Abstract][Full Text] [Related]
14. Metabolic engineering of Saccharomyces cerevisiae for enhanced taxadiene production. Karaca H; Kaya M; Kapkac HA; Levent S; Ozkay Y; Ozan SD; Nielsen J; Krivoruchko A Microb Cell Fact; 2024 Sep; 23(1):241. PubMed ID: 39242505 [TBL] [Abstract][Full Text] [Related]
15. Metabolic Engineering of Li T; Liu GS; Zhou W; Jiang M; Ren YH; Tao XY; Liu M; Zhao M; Wang FQ; Gao B; Wei DZ J Agric Food Chem; 2020 Feb; 68(7):2132-2138. PubMed ID: 31989819 [TBL] [Abstract][Full Text] [Related]
16. High-level recombinant production of squalene using selected Saccharomyces cerevisiae strains. Han JY; Seo SH; Song JM; Lee H; Choi ES J Ind Microbiol Biotechnol; 2018 Apr; 45(4):239-251. PubMed ID: 29396745 [TBL] [Abstract][Full Text] [Related]
17. High production of valencene in Saccharomyces cerevisiae through metabolic engineering. Chen H; Zhu C; Zhu M; Xiong J; Ma H; Zhuo M; Li S Microb Cell Fact; 2019 Nov; 18(1):195. PubMed ID: 31699116 [TBL] [Abstract][Full Text] [Related]
18. A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae. Peng B; Plan MR; Chrysanthopoulos P; Hodson MP; Nielsen LK; Vickers CE Metab Eng; 2017 Jan; 39():209-219. PubMed ID: 27939849 [TBL] [Abstract][Full Text] [Related]
19. Metabolic engineering of Saccharomyces cerevisiae for production of germacrene A, a precursor of beta-elemene. Hu Y; Zhou YJ; Bao J; Huang L; Nielsen J; Krivoruchko A J Ind Microbiol Biotechnol; 2017 Jul; 44(7):1065-1072. PubMed ID: 28547322 [TBL] [Abstract][Full Text] [Related]
20. Production of (-)-α-bisabolol in metabolically engineered Saccharomyces cerevisiae. Kim TY; Park H; Kim SK; Kim SJ; Park YC J Biotechnol; 2021 Nov; 340():13-21. PubMed ID: 34391805 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]