These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 33683212)

  • 1. Natural Language Processing and Machine Learning for Identifying Incident Stroke From Electronic Health Records: Algorithm Development and Validation.
    Zhao Y; Fu S; Bielinski SJ; Decker PA; Chamberlain AM; Roger VL; Liu H; Larson NB
    J Med Internet Res; 2021 Mar; 23(3):e22951. PubMed ID: 33683212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automating Ischemic Stroke Subtype Classification Using Machine Learning and Natural Language Processing.
    Garg R; Oh E; Naidech A; Kording K; Prabhakaran S
    J Stroke Cerebrovasc Dis; 2019 Jul; 28(7):2045-2051. PubMed ID: 31103549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated feature selection of predictors in electronic medical records data.
    Gronsbell J; Minnier J; Yu S; Liao K; Cai T
    Biometrics; 2019 Mar; 75(1):268-277. PubMed ID: 30353541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated Electronic Phenotyping of Cardioembolic Stroke.
    Guan W; Ko D; Khurshid S; Trisini Lipsanopoulos AT; Ashburner JM; Harrington LX; Rost NS; Atlas SJ; Singer DE; McManus DD; Anderson CD; Lubitz SA
    Stroke; 2021 Jan; 52(1):181-189. PubMed ID: 33297865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of machine learning and natural language processing algorithms for preoperative prediction and automated identification of intraoperative vascular injury in anterior lumbar spine surgery.
    Karhade AV; Bongers MER; Groot OQ; Cha TD; Doorly TP; Fogel HA; Hershman SH; Tobert DG; Srivastava SD; Bono CM; Kang JD; Harris MB; Schwab JH
    Spine J; 2021 Oct; 21(10):1635-1642. PubMed ID: 32294557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying lupus patients in electronic health records: Development and validation of machine learning algorithms and application of rule-based algorithms.
    Jorge A; Castro VM; Barnado A; Gainer V; Hong C; Cai T; Cai T; Carroll R; Denny JC; Crofford L; Costenbader KH; Liao KP; Karlson EW; Feldman CH
    Semin Arthritis Rheum; 2019 Aug; 49(1):84-90. PubMed ID: 30665626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records.
    Carson NJ; Mullin B; Sanchez MJ; Lu F; Yang K; Menezes M; Cook BL
    PLoS One; 2019; 14(2):e0211116. PubMed ID: 30779800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing stroke severity using electronic health record data: a machine learning approach.
    Kogan E; Twyman K; Heap J; Milentijevic D; Lin JH; Alberts M
    BMC Med Inform Decis Mak; 2020 Jan; 20(1):8. PubMed ID: 31914991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning Electronic Health Record Identification of Patients with Rheumatoid Arthritis: Algorithm Pipeline Development and Validation Study.
    Maarseveen TD; Meinderink T; Reinders MJT; Knitza J; Huizinga TWJ; Kleyer A; Simon D; van den Akker EB; Knevel R
    JMIR Med Inform; 2020 Nov; 8(11):e23930. PubMed ID: 33252349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebrovascular disease case identification in inpatient electronic medical record data using natural language processing.
    Pan J; Zhang Z; Peters SR; Vatanpour S; Walker RL; Lee S; Martin EA; Quan H
    Brain Inform; 2023 Sep; 10(1):22. PubMed ID: 37658963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural language processing and machine learning to enable automatic extraction and classification of patients' smoking status from electronic medical records.
    Caccamisi A; Jørgensen L; Dalianis H; Rosenlund M
    Ups J Med Sci; 2020 Nov; 125(4):316-324. PubMed ID: 32696698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards phenotyping stroke: Leveraging data from a large-scale epidemiological study to detect stroke diagnosis.
    Ni Y; Alwell K; Moomaw CJ; Woo D; Adeoye O; Flaherty ML; Ferioli S; Mackey J; De Los Rios La Rosa F; Martini S; Khatri P; Kleindorfer D; Kissela BM
    PLoS One; 2018; 13(2):e0192586. PubMed ID: 29444182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial Intelligence Learning Semantics via External Resources for Classifying Diagnosis Codes in Discharge Notes.
    Lin C; Hsu CJ; Lou YS; Yeh SJ; Lee CC; Su SL; Chen HC
    J Med Internet Res; 2017 Nov; 19(11):e380. PubMed ID: 29109070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atrial Fibrillation Burden Signature and Near-Term Prediction of Stroke: A Machine Learning Analysis.
    Han L; Askari M; Altman RB; Schmitt SK; Fan J; Bentley JP; Narayan SM; Turakhia MP
    Circ Cardiovasc Qual Outcomes; 2019 Oct; 12(10):e005595. PubMed ID: 31610712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of rule-based and machine learning approaches for classifying patient portal messages.
    Cronin RM; Fabbri D; Denny JC; Rosenbloom ST; Jackson GP
    Int J Med Inform; 2017 Sep; 105():110-120. PubMed ID: 28750904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating electronic health record data sources and algorithmic approaches to identify hypertensive individuals.
    Teixeira PL; Wei WQ; Cronin RM; Mo H; VanHouten JP; Carroll RJ; LaRose E; Bastarache LA; Rosenbloom ST; Edwards TL; Roden DM; Lasko TA; Dart RA; Nikolai AM; Peissig PL; Denny JC
    J Am Med Inform Assoc; 2017 Jan; 24(1):162-171. PubMed ID: 27497800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rule-based and machine learning algorithms identify patients with systemic sclerosis accurately in the electronic health record.
    Jamian L; Wheless L; Crofford LJ; Barnado A
    Arthritis Res Ther; 2019 Dec; 21(1):305. PubMed ID: 31888720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Publicly available machine learning models for identifying opioid misuse from the clinical notes of hospitalized patients.
    Sharma B; Dligach D; Swope K; Salisbury-Afshar E; Karnik NS; Joyce C; Afshar M
    BMC Med Inform Decis Mak; 2020 Apr; 20(1):79. PubMed ID: 32349766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Incident Atrial Fibrillation From Electronic Medical Records.
    Chamberlain AM; Roger VL; Noseworthy PA; Chen LY; Weston SA; Jiang R; Alonso A
    J Am Heart Assoc; 2022 Apr; 11(7):e023237. PubMed ID: 35348008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applying active learning to high-throughput phenotyping algorithms for electronic health records data.
    Chen Y; Carroll RJ; Hinz ER; Shah A; Eyler AE; Denny JC; Xu H
    J Am Med Inform Assoc; 2013 Dec; 20(e2):e253-9. PubMed ID: 23851443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.