BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 33683212)

  • 21. Incorporating natural language processing to improve classification of axial spondyloarthritis using electronic health records.
    Zhao SS; Hong C; Cai T; Xu C; Huang J; Ermann J; Goodson NJ; Solomon DH; Cai T; Liao KP
    Rheumatology (Oxford); 2020 May; 59(5):1059-1065. PubMed ID: 31535693
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Natural language processing to identify lupus nephritis phenotype in electronic health records.
    Deng Y; Pacheco JA; Ghosh A; Chung A; Mao C; Smith JC; Zhao J; Wei WQ; Barnado A; Dorn C; Weng C; Liu C; Cordon A; Yu J; Tedla Y; Kho A; Ramsey-Goldman R; Walunas T; Luo Y
    BMC Med Inform Decis Mak; 2024 Mar; 22(Suppl 2):348. PubMed ID: 38433189
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of recurrent atrial fibrillation using natural language processing applied to electronic health records.
    Zheng C; Lee MS; Bansal N; Go AS; Chen C; Harrison TN; Fan D; Allen A; Garcia E; Lidgard B; Singer D; An J
    Eur Heart J Qual Care Clin Outcomes; 2024 Jan; 10(1):77-88. PubMed ID: 36997334
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Natural language processing and machine learning to identify alcohol misuse from the electronic health record in trauma patients: development and internal validation.
    Afshar M; Phillips A; Karnik N; Mueller J; To D; Gonzalez R; Price R; Cooper R; Joyce C; Dligach D
    J Am Med Inform Assoc; 2019 Mar; 26(3):254-261. PubMed ID: 30602031
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving Methods of Identifying Anaphylaxis for Medical Product Safety Surveillance Using Natural Language Processing and Machine Learning.
    Carrell DS; Gruber S; Floyd JS; Bann MA; Cushing-Haugen KL; Johnson RL; Graham V; Cronkite DJ; Hazlehurst BL; Felcher AH; Bejan CA; Kennedy A; Shinde MU; Karami S; Ma Y; Stojanovic D; Zhao Y; Ball R; Nelson JC
    Am J Epidemiol; 2023 Feb; 192(2):283-295. PubMed ID: 36331289
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using natural language processing and machine learning to identify breast cancer local recurrence.
    Zeng Z; Espino S; Roy A; Li X; Khan SA; Clare SE; Jiang X; Neapolitan R; Luo Y
    BMC Bioinformatics; 2018 Dec; 19(Suppl 17):498. PubMed ID: 30591037
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Word2Vec inversion and traditional text classifiers for phenotyping lupus.
    Turner CA; Jacobs AD; Marques CK; Oates JC; Kamen DL; Anderson PE; Obeid JS
    BMC Med Inform Decis Mak; 2017 Aug; 17(1):126. PubMed ID: 28830409
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Machine Learning-Based Prediction of Atrial Fibrillation Risk Using Electronic Medical Records in Older Aged Patients.
    Kao YT; Huang CY; Fang YA; Liu JC; Chang TH
    Am J Cardiol; 2023 Jul; 198():56-63. PubMed ID: 37209529
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Scalable relevance ranking algorithm via semantic similarity assessment improves efficiency of medical chart review.
    Cai T; He Z; Hong C; Zhang Y; Ho YL; Honerlaw J; Geva A; Ayakulangara Panickan V; King A; Gagnon DR; Gaziano M; Cho K; Liao K; Cai T
    J Biomed Inform; 2022 Aug; 132():104109. PubMed ID: 35660521
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Machine learning and natural language processing (NLP) approach to predict early progression to first-line treatment in real-world hormone receptor-positive (HR+)/HER2-negative advanced breast cancer patients.
    Ribelles N; Jerez JM; Rodriguez-Brazzarola P; Jimenez B; Diaz-Redondo T; Mesa H; Marquez A; Sanchez-Muñoz A; Pajares B; Carabantes F; Bermejo MJ; Villar E; Dominguez-Recio ME; Saez E; Galvez L; Godoy A; Franco L; Ruiz-Medina S; Lopez I; Alba E
    Eur J Cancer; 2021 Feb; 144():224-231. PubMed ID: 33373867
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Discovering and identifying New York heart association classification from electronic health records.
    Zhang R; Ma S; Shanahan L; Munroe J; Horn S; Speedie S
    BMC Med Inform Decis Mak; 2018 Jul; 18(Suppl 2):48. PubMed ID: 30066653
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Natural Language Processing for Asthma Ascertainment in Different Practice Settings.
    Wi CI; Sohn S; Ali M; Krusemark E; Ryu E; Liu H; Juhn YJ
    J Allergy Clin Immunol Pract; 2018; 6(1):126-131. PubMed ID: 28634104
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Supervised Text Classification System Detects Fontan Patients in Electronic Records With Higher Accuracy Than
    Guo Y; Al-Garadi MA; Book WM; Ivey LC; Rodriguez FH; Raskind-Hood CL; Robichaux C; Sarker A
    J Am Heart Assoc; 2023 Jul; 12(13):e030046. PubMed ID: 37345821
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Natural Language Processing Combined with ICD-9-CM Codes as a Novel Method to Study the Epidemiology of Allergic Drug Reactions.
    Banerji A; Lai KH; Li Y; Saff RR; Camargo CA; Blumenthal KG; Zhou L
    J Allergy Clin Immunol Pract; 2020 Mar; 8(3):1032-1038.e1. PubMed ID: 31857264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of Stroke Detection during the COVID-19 Pandemic Using Natural Language Processing of Radiology Reports.
    Li MD; Lang M; Deng F; Chang K; Buch K; Rincon S; Mehan WA; Leslie-Mazwi TM; Kalpathy-Cramer J
    AJNR Am J Neuroradiol; 2021 Mar; 42(3):429-434. PubMed ID: 33334851
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automated Fall Detection Algorithm With Global Trigger Tool, Incident Reports, Manual Chart Review, and Patient-Reported Falls: Algorithm Development and Validation With a Retrospective Diagnostic Accuracy Study.
    Dolci E; Schärer B; Grossmann N; Musy SN; Zúñiga F; Bachnick S; Simon M
    J Med Internet Res; 2020 Sep; 22(9):e19516. PubMed ID: 32955445
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A validated natural language processing algorithm for brain imaging phenotypes from radiology reports in UK electronic health records.
    Wheater E; Mair G; Sudlow C; Alex B; Grover C; Whiteley W
    BMC Med Inform Decis Mak; 2019 Sep; 19(1):184. PubMed ID: 31500613
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative analysis, applications, and interpretation of electronic health record-based stroke phenotyping methods.
    Thangaraj PM; Kummer BR; Lorberbaum T; Elkind MSV; Tatonetti NP
    BioData Min; 2020 Dec; 13(1):21. PubMed ID: 33372632
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development and Evaluation of a Natural Language Processing Annotation Tool to Facilitate Phenotyping of Cognitive Status in Electronic Health Records: Diagnostic Study.
    Noori A; Magdamo C; Liu X; Tyagi T; Li Z; Kondepudi A; Alabsi H; Rudmann E; Wilcox D; Brenner L; Robbins GK; Moura L; Zafar S; Benson NM; Hsu J; R Dickson J; Serrano-Pozo A; Hyman BT; Blacker D; Westover MB; Mukerji SS; Das S
    J Med Internet Res; 2022 Aug; 24(8):e40384. PubMed ID: 36040790
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient identification of nationally mandated reportable cancer cases using natural language processing and machine learning.
    Osborne JD; Wyatt M; Westfall AO; Willig J; Bethard S; Gordon G
    J Am Med Inform Assoc; 2016 Nov; 23(6):1077-1084. PubMed ID: 27026618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.