BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 33683212)

  • 41. Development of a Portable Tool to Identify Patients With Atrial Fibrillation Using Clinical Notes From the Electronic Medical Record.
    Shah RU; Mutharasan RK; Ahmad FS; Rosenblatt AG; Gay HC; Steinberg BA; Yandell M; Tristani-Firouzi M; Klewer J; Mukherjee R; Lloyd-Jones DM
    Circ Cardiovasc Qual Outcomes; 2020 Oct; 13(10):e006516. PubMed ID: 33079591
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Automation of penicillin adverse drug reaction categorisation and risk stratification with machine learning natural language processing.
    Inglis JM; Bacchi S; Troelnikov A; Smith W; Shakib S
    Int J Med Inform; 2021 Dec; 156():104611. PubMed ID: 34653809
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Developing an Inpatient Electronic Medical Record Phenotype for Hospital-Acquired Pressure Injuries: Case Study Using Natural Language Processing Models.
    Nurmambetova E; Pan J; Zhang Z; Wu G; Lee S; Southern DA; Martin EA; Ho C; Xu Y; Eastwood CA
    JMIR AI; 2023 Mar; 2():e41264. PubMed ID: 38875552
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of 2 Natural Language Processing Methods for Identification of Bleeding Among Critically Ill Patients.
    Taggart M; Chapman WW; Steinberg BA; Ruckel S; Pregenzer-Wenzler A; Du Y; Ferraro J; Bucher BT; Lloyd-Jones DM; Rondina MT; Shah RU
    JAMA Netw Open; 2018 Oct; 1(6):e183451. PubMed ID: 30646240
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Machine learning for phenotyping opioid overdose events.
    Badger J; LaRose E; Mayer J; Bashiri F; Page D; Peissig P
    J Biomed Inform; 2019 Jun; 94():103185. PubMed ID: 31028874
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Classifying early infant feeding status from clinical notes using natural language processing and machine learning.
    Lemas DJ; Du X; Rouhizadeh M; Lewis B; Frank S; Wright L; Spirache A; Gonzalez L; Cheves R; Magalhães M; Zapata R; Reddy R; Xu K; Parker L; Harle C; Young B; Louis-Jaques A; Zhang B; Thompson L; Hogan WR; Modave F
    Sci Rep; 2024 Apr; 14(1):7831. PubMed ID: 38570569
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ophthalmology Operation Note Encoding with Open-Source Machine Learning and Natural Language Processing.
    Lee YM; Bacchi S; Macri C; Tan Y; Casson R; Chan WO
    Ophthalmic Res; 2023; 66(1):928-939. PubMed ID: 37231984
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of a natural language processing algorithm to detect chronic cough in electronic health records.
    Bali V; Weaver J; Turzhitsky V; Schelfhout J; Paudel ML; Hulbert E; Peterson-Brandt J; Currie AG; Bakka D
    BMC Pulm Med; 2022 Jun; 22(1):256. PubMed ID: 35764999
    [TBL] [Abstract][Full Text] [Related]  

  • 49. EMR-Based Phenotyping of Ischemic Stroke Using Supervised Machine Learning and Text Mining Techniques.
    Sung SF; Lin CY; Hu YH
    IEEE J Biomed Health Inform; 2020 Oct; 24(10):2922-2931. PubMed ID: 32142458
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Natural Language Processing and Machine Learning to Identify People Who Inject Drugs in Electronic Health Records.
    Goodman-Meza D; Tang A; Aryanfar B; Vazquez S; Gordon AJ; Goto M; Goetz MB; Shoptaw S; Bui AAT
    Open Forum Infect Dis; 2022 Sep; 9(9):ofac471. PubMed ID: 36168546
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Validation of an alcohol misuse classifier in hospitalized patients.
    To D; Sharma B; Karnik N; Joyce C; Dligach D; Afshar M
    Alcohol; 2020 May; 84():49-55. PubMed ID: 31574300
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Automatic phenotyping of electronical health record: PheVis algorithm.
    Ferté T; Cossin S; Schaeverbeke T; Barnetche T; Jouhet V; Hejblum BP
    J Biomed Inform; 2021 May; 117():103746. PubMed ID: 33746080
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Social Reminiscence in Older Adults' Everyday Conversations: Automated Detection Using Natural Language Processing and Machine Learning.
    Ferrario A; Demiray B; Yordanova K; Luo M; Martin M
    J Med Internet Res; 2020 Sep; 22(9):e19133. PubMed ID: 32866108
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Machine learning-enabled multitrust audit of stroke comorbidities using natural language processing.
    Shek A; Jiang Z; Teo J; Au Yeung J; Bhalla A; Richardson MP; Mah Y
    Eur J Neurol; 2021 Dec; 28(12):4090-4097. PubMed ID: 34407269
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Classifying Pseudogout Using Machine Learning Approaches With Electronic Health Record Data.
    Tedeschi SK; Cai T; He Z; Ahuja Y; Hong C; Yates KA; Dahal K; Xu C; Lyu H; Yoshida K; Solomon DH; Cai T; Liao KP
    Arthritis Care Res (Hoboken); 2021 Mar; 73(3):442-448. PubMed ID: 31910317
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Use of natural language processing in electronic medical records to identify pregnant women with suicidal behavior: towards a solution to the complex classification problem.
    Zhong QY; Mittal LP; Nathan MD; Brown KM; Knudson González D; Cai T; Finan S; Gelaye B; Avillach P; Smoller JW; Karlson EW; Cai T; Williams MA
    Eur J Epidemiol; 2019 Feb; 34(2):153-162. PubMed ID: 30535584
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhancing ICD-Code-Based Case Definition for Heart Failure Using Electronic Medical Record Data.
    Xu Y; Lee S; Martin E; D'souza AG; Doktorchik CTA; Jiang J; Lee S; Eastwood CA; Fine N; Hemmelgarn B; Todd K; Quan H
    J Card Fail; 2020 Jul; 26(7):610-617. PubMed ID: 32304875
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Extracting information from the text of electronic medical records to improve case detection: a systematic review.
    Ford E; Carroll JA; Smith HE; Scott D; Cassell JA
    J Am Med Inform Assoc; 2016 Sep; 23(5):1007-15. PubMed ID: 26911811
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Natural Language Processing for the Identification of Silent Brain Infarcts From Neuroimaging Reports.
    Fu S; Leung LY; Wang Y; Raulli AO; Kallmes DF; Kinsman KA; Nelson KB; Clark MS; Luetmer PH; Kingsbury PR; Kent DM; Liu H
    JMIR Med Inform; 2019 Apr; 7(2):e12109. PubMed ID: 31066686
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Surrogate-assisted feature extraction for high-throughput phenotyping.
    Yu S; Chakrabortty A; Liao KP; Cai T; Ananthakrishnan AN; Gainer VS; Churchill SE; Szolovits P; Murphy SN; Kohane IS; Cai T
    J Am Med Inform Assoc; 2017 Apr; 24(e1):e143-e149. PubMed ID: 27632993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.