These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 33683230)

  • 1. Structural crystallisation of crosslinked 3D PEDOT:PSS anisotropic porous biomaterials to generate highly conductive platforms for tissue engineering applications.
    Solazzo M; Monaghan MG
    Biomater Sci; 2021 Jun; 9(12):4317-4328. PubMed ID: 33683230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly porous scaffolds of PEDOT:PSS for bone tissue engineering.
    Guex AG; Puetzer JL; Armgarth A; Littmann E; Stavrinidou E; Giannelis EP; Malliaras GG; Stevens MM
    Acta Biomater; 2017 Oct; 62():91-101. PubMed ID: 28865991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D printing of cell-laden electroconductive bioinks for tissue engineering applications.
    Rastin H; Zhang B; Bi J; Hassan K; Tung TT; Losic D
    J Mater Chem B; 2020 Jul; 8(27):5862-5876. PubMed ID: 32558857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroconductive scaffolds based on gelatin and PEDOT:PSS for cardiac regeneration.
    Furlani F; Campodoni E; Sangiorgi N; Montesi M; Sanson A; Sandri M; Panseri S
    Int J Biol Macromol; 2023 Jan; 224():266-280. PubMed ID: 36265541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailored Methodology Based on Vapor Phase Polymerization to Manufacture PEDOT/CNT Scaffolds for Tissue Engineering.
    Dominguez-Alfaro A; Alegret N; Arnaiz B; González-Domínguez JM; Martin-Pacheco A; Cossío U; Porcarelli L; Bosi S; Vázquez E; Mecerreyes D; Prato M
    ACS Biomater Sci Eng; 2020 Feb; 6(2):1269-1278. PubMed ID: 33464834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomineralization and biocompatibility studies of bone conductive scaffolds containing poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate) (PEDOT:PSS).
    Yazdimamaghani M; Razavi M; Mozafari M; Vashaee D; Kotturi H; Tayebi L
    J Mater Sci Mater Med; 2015 Dec; 26(12):274. PubMed ID: 26543020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering.
    Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Workflow to Produce a Low-Cost In Vitro Platform for the Electric-Field Pacing of Cellularised 3D Porous Scaffolds.
    Solazzo M; Monaghan MG
    ACS Biomater Sci Eng; 2023 Aug; 9(8):4573-4582. PubMed ID: 37531298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PEDOT:PSS interfaces stabilised using a PEGylated crosslinker yield improved conductivity and biocompatibility.
    Solazzo M; Krukiewicz K; Zhussupbekova A; Fleischer K; Biggs MJ; Monaghan MG
    J Mater Chem B; 2019 Aug; 7(31):4811-4820. PubMed ID: 31389966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of Neuronal Cell Affinity on PEDOT-PSS Nonwoven Silk Scaffolds for Neural Tissue Engineering.
    Magaz A; Spencer BF; Hardy JG; Li X; Gough JE; Blaker JJ
    ACS Biomater Sci Eng; 2020 Dec; 6(12):6906-6916. PubMed ID: 33320623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Conductive PPy-PEDOT:PSS Hybrid Hydrogel with Superior Biocompatibility for Bioelectronics Application.
    Ren X; Yang M; Yang T; Xu C; Ye Y; Wu X; Zheng X; Wang B; Wan Y; Luo Z
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25374-25382. PubMed ID: 34009925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advancements in tailoring PEDOT: PSS properties for bioelectronic applications: A comprehensive review.
    Seiti M; Giuri A; Corcione CE; Ferraris E
    Biomater Adv; 2023 Nov; 154():213655. PubMed ID: 37866232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable and electroconductive poly(3,4-ethylenedioxythiophene)/carboxymethyl chitosan hydrogels for neural tissue engineering.
    Xu C; Guan S; Wang S; Gong W; Liu T; Ma X; Sun C
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():32-43. PubMed ID: 29519441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biophysical Electrical and Mechanical Stimulations for Promoting Chondrogenesis of Stem Cells on PEDOT:PSS Conductive Polymer Scaffolds.
    Liu CT; Yu J; Lin MH; Chang KH; Lin CY; Cheng NC; Wu PI; Huang CW; Zhang PY; Hung MT; Hsiao YS
    Biomacromolecules; 2023 Aug; 24(8):3858-3871. PubMed ID: 37523499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrosynthesis of Biocompatible Free-Standing PEDOT Thin Films at a Polarized Liquid|Liquid Interface.
    Lehane RA; Gamero-Quijano A; Malijauskaite S; Holzinger A; Conroy M; Laffir F; Kumar A; Bangert U; McGourty K; Scanlon MD
    J Am Chem Soc; 2022 Mar; 144(11):4853-4862. PubMed ID: 35262332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A conductive PEDOT/alginate porous scaffold as a platform to modulate the biological behaviors of brown adipose-derived stem cells.
    Yang B; Yao F; Ye L; Hao T; Zhang Y; Zhang L; Dong D; Fang W; Wang Y; Zhang X; Wang C; Li J
    Biomater Sci; 2020 Jun; 8(11):3173-3185. PubMed ID: 32367084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of Curli Fiber-PEDOT:PSS Biomaterials with Tunable Self-Healing, Mechanical, and Electrical Properties.
    Huyer C; Modafferi D; Aminzare M; Ferraro J; Abdali Z; Roy S; Saldanha DJ; Wasim S; Alberti J; Feng S; Cicoira F; Dorval Courchesne NM
    ACS Biomater Sci Eng; 2023 May; 9(5):2156-2169. PubMed ID: 35687654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D culture of neural stem cells within conductive PEDOT layer-assembled chitosan/gelatin scaffolds for neural tissue engineering.
    Wang S; Guan S; Li W; Ge D; Xu J; Sun C; Liu T; Ma X
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():890-901. PubMed ID: 30274126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D conductive nanocomposite scaffold for bone tissue engineering.
    Shahini A; Yazdimamaghani M; Walker KJ; Eastman MA; Hatami-Marbini H; Smith BJ; Ricci JL; Madihally SV; Vashaee D; Tayebi L
    Int J Nanomedicine; 2014; 9():167-81. PubMed ID: 24399874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and Characterization of Organic Electronic Scaffolds for Bone Tissue Engineering.
    Iandolo D; Ravichandran A; Liu X; Wen F; Chan JK; Berggren M; Teoh SH; Simon DT
    Adv Healthc Mater; 2016 Jun; 5(12):1505-12. PubMed ID: 27111453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.