These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 33683268)
1. The acoustic droplet printing of functional tumor microenvironments. Chen K; Jiang E; Wei X; Xia Y; Wu Z; Gong Z; Shang Z; Guo S Lab Chip; 2021 Apr; 21(8):1604-1612. PubMed ID: 33683268 [TBL] [Abstract][Full Text] [Related]
2. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy. Yin J; Yan M; Wang Y; Fu J; Suo H ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059 [TBL] [Abstract][Full Text] [Related]
3. Multiscale 3D Bioprinting by Nozzle-Free Acoustic Droplet Ejection. Jentsch S; Nasehi R; Kuckelkorn C; Gundert B; Aveic S; Fischer H Small Methods; 2021 Jun; 5(6):e2000971. PubMed ID: 34927902 [TBL] [Abstract][Full Text] [Related]
4. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity. Ning L; Mehta R; Cao C; Theus A; Tomov M; Zhu N; Weeks ER; Bauser-Heaton H; Serpooshan V ACS Appl Mater Interfaces; 2020 Oct; 12(40):44563-44577. PubMed ID: 32966746 [TBL] [Abstract][Full Text] [Related]
5. Advancing bioinks for 3D bioprinting using reactive fillers: A review. Heid S; Boccaccini AR Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053 [TBL] [Abstract][Full Text] [Related]
6. Electro-Assisted Bioprinting of Low-Concentration GelMA Microdroplets. Xie M; Gao Q; Zhao H; Nie J; Fu Z; Wang H; Chen L; Shao L; Fu J; Chen Z; He Y Small; 2019 Jan; 15(4):e1804216. PubMed ID: 30569632 [TBL] [Abstract][Full Text] [Related]
7. 'Printability' of Candidate Biomaterials for Extrusion Based 3D Printing: State-of-the-Art. Kyle S; Jessop ZM; Al-Sabah A; Whitaker IS Adv Healthc Mater; 2017 Aug; 6(16):. PubMed ID: 28558161 [TBL] [Abstract][Full Text] [Related]
8. Assembling Microgels via Dynamic Cross-Linking Reaction Improves Printability, Microporosity, Tissue-Adhesion, and Self-Healing of Microgel Bioink for Extrusion Bioprinting. Feng Q; Li D; Li Q; Li H; Wang Z; Zhu S; Lin Z; Cao X; Dong H ACS Appl Mater Interfaces; 2022 Apr; 14(13):15653-15666. PubMed ID: 35344348 [TBL] [Abstract][Full Text] [Related]
9. Microfluidic 3D Printing of a Photo-Cross-Linkable Bioink Using Insights from Computational Modeling. Mirani B; Stefanek E; Godau B; Hossein Dabiri SM; Akbari M ACS Biomater Sci Eng; 2021 Jul; 7(7):3269-3280. PubMed ID: 34142796 [TBL] [Abstract][Full Text] [Related]
10. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix. Shin YJ; Shafranek RT; Tsui JH; Walcott J; Nelson A; Kim DH Acta Biomater; 2021 Jan; 119():75-88. PubMed ID: 33166713 [TBL] [Abstract][Full Text] [Related]
11. Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks. Cui X; Li J; Hartanto Y; Durham M; Tang J; Zhang H; Hooper G; Lim K; Woodfield T Adv Healthc Mater; 2020 Aug; 9(15):e1901648. PubMed ID: 32352649 [TBL] [Abstract][Full Text] [Related]
12. Low-Temperature Three-Dimensional Printing of Tissue Cartilage Engineered with Gelatin Methacrylamide. Luo C; Xie R; Zhang J; Liu Y; Li Z; Zhang Y; Zhang X; Yuan T; Chen Y; Fan W Tissue Eng Part C Methods; 2020 Jun; 26(6):306-316. PubMed ID: 32349648 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional bioprinting of a full-thickness functional skin model using acellular dermal matrix and gelatin methacrylamide bioink. Jin R; Cui Y; Chen H; Zhang Z; Weng T; Xia S; Yu M; Zhang W; Shao J; Yang M; Han C; Wang X Acta Biomater; 2021 Sep; 131():248-261. PubMed ID: 34265473 [TBL] [Abstract][Full Text] [Related]
14. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink. Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677 [TBL] [Abstract][Full Text] [Related]
15. Harnessing decellularised extracellular matrix microgels into modular bioinks for extrusion-based bioprinting with good printability and high post-printing cell viability. Chu H; Zhang K; Rao Z; Song P; Lin Z; Zhou J; Yang L; Quan D; Bai Y Biomater Transl; 2023; 4(2):115-127. PubMed ID: 38283918 [TBL] [Abstract][Full Text] [Related]
17. Ultrashort Peptide Bioinks Support Automated Printing of Large-Scale Constructs Assuring Long-Term Survival of Printed Tissue Constructs. Susapto HH; Alhattab D; Abdelrahman S; Khan Z; Alshehri S; Kahin K; Ge R; Moretti M; Emwas AH; Hauser CAE Nano Lett; 2021 Apr; 21(7):2719-2729. PubMed ID: 33492960 [TBL] [Abstract][Full Text] [Related]
18. Hydrogel-Based 3D Bioprinting for Bone and Cartilage Tissue Engineering. Abdollahiyan P; Oroojalian F; Mokhtarzadeh A; de la Guardia M Biotechnol J; 2020 Dec; 15(12):e2000095. PubMed ID: 32869529 [TBL] [Abstract][Full Text] [Related]
19. Optimization of 3D bioprinting of periodontal ligament cells. Thattaruparambil Raveendran N; Vaquette C; Meinert C; Samuel Ipe D; Ivanovski S Dent Mater; 2019 Dec; 35(12):1683-1694. PubMed ID: 31601443 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional bioprinting of artificial ovaries by an extrusion-based method using gelatin-methacryloyl bioink. Wu T; Gao YY; Su J; Tang XN; Chen Q; Ma LW; Zhang JJ; Wu JM; Wang SX Climacteric; 2022 Apr; 25(2):170-178. PubMed ID: 33993814 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]