These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33683489)

  • 1. Active spheres induce Marangoni flows that drive collective dynamics.
    Wittmann M; Popescu MN; Domínguez A; Simmchen J
    Eur Phys J E Soft Matter; 2021 Mar; 44(2):15. PubMed ID: 33683489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase coexistence in a monolayer of active particles induced by Marangoni flows.
    Domínguez A; Popescu MN
    Soft Matter; 2018 Oct; 14(39):8017-8029. PubMed ID: 30246847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collective dynamics of chemically active particles trapped at a fluid interface.
    Domínguez A; Malgaretti P; Popescu MN; Dietrich S
    Soft Matter; 2016 Oct; 12(40):8398-8406. PubMed ID: 27714377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Marangoni flows triggered by cationic-anionic surfactant complexation.
    Nikkhah A; Shin S
    J Colloid Interface Sci; 2024 Jul; 676():168-176. PubMed ID: 39024817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant Driven Marangoni Spreading in the Presence of Predeposited Insoluble Surfactant Monolayers.
    Sauleda ML; Chu HCW; Tilton RD; Garoff S
    Langmuir; 2021 Mar; 37(11):3309-3320. PubMed ID: 33689367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of a partially wetted particle at the liquid/vapor interface under the influence of an externally imposed surfactant generated Marangoni stress.
    Sharma R; Corcoran TE; Garoff S; Przybycien TM; Tilton RD
    Colloids Surf A Physicochem Eng Asp; 2017 May; 521():49-60. PubMed ID: 28479673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient Marangoni transport of colloidal particles at the liquid/liquid interface caused by surfactant convective-diffusion under radial flow.
    Dunér G; Garoff S; Przybycien TM; Tilton RD
    J Colloid Interface Sci; 2016 Jan; 462():75-87. PubMed ID: 26433480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective Interaction between Active Colloids and Fluid Interfaces Induced by Marangoni Flows.
    Domínguez A; Malgaretti P; Popescu MN; Dietrich S
    Phys Rev Lett; 2016 Feb; 116(7):078301. PubMed ID: 26943561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collective surfing of chemically active particles.
    Masoud H; Shelley MJ
    Phys Rev Lett; 2014 Mar; 112(12):128304. PubMed ID: 24724685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interface-mediated spontaneous symmetry breaking and mutual communication between drops containing chemically active particles.
    Singh DP; Domínguez A; Choudhury U; Kottapalli SN; Popescu MN; Dietrich S; Fischer P
    Nat Commun; 2020 May; 11(1):2210. PubMed ID: 32372005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coarsening dynamics of binary liquids with active rotation.
    Sabrina S; Spellings M; Glotzer SC; Bishop KJ
    Soft Matter; 2015 Nov; 11(43):8409-16. PubMed ID: 26345231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Multi-engine Marangoni Rotor with Controlled Motion for Mini-Generator Application.
    Lu G; Zhu G; Peng B; Zhao R; Shi F; Cheng M
    ACS Appl Mater Interfaces; 2023 May; 15(19):23980-23988. PubMed ID: 37140932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective Interactions between Chemically Active Colloids and Interfaces.
    Popescu MN; Uspal WE; Domínguez A; Dietrich S
    Acc Chem Res; 2018 Dec; 51(12):2991-2997. PubMed ID: 30403132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of a fully wetted Marangoni surfer at the fluid-fluid interface.
    Gidituri H; Panchagnula MV; Pototsky A
    Soft Matter; 2019 Mar; 15(10):2284-2291. PubMed ID: 30775771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective squirmer models for self-phoretic chemically active spherical colloids.
    Popescu MN; Uspal WE; Eskandari Z; Tasinkevych M; Dietrich S
    Eur Phys J E Soft Matter; 2018 Dec; 41(12):145. PubMed ID: 30569319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption inhibition by swollen micelles may cause multistability in active droplets.
    Morozov M
    Soft Matter; 2020 Jun; 16(24):5624-5632. PubMed ID: 32530002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of chemically active particles at an air-liquid interface.
    Imamura S; Kawakatsu T
    Eur Phys J E Soft Matter; 2021 Oct; 44(10):127. PubMed ID: 34655360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH-dependent motion of self-propelled droplets due to Marangoni effect at neutral pH.
    Ban T; Yamagami T; Nakata H; Okano Y
    Langmuir; 2013 Feb; 29(8):2554-61. PubMed ID: 23369012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear dynamics of a chemically-active drop: From steady to chaotic self-propulsion.
    Morozov M; Michelin S
    J Chem Phys; 2019 Jan; 150(4):044110. PubMed ID: 30709268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.