BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 33683706)

  • 1. Ocular dominance columns in V1 are more susceptible than associated callosal patches to imbalance of eye input during precritical and critical periods.
    Olavarria JF; Laing RJ; Andelin AK
    J Comp Neurol; 2021 Aug; 529(11):2883-2910. PubMed ID: 33683706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of ocular dominance columns and patchy callosal connections on binocularity in lateral striate cortex: Long Evans versus albino rats.
    Andelin AK; Doyle Z; Laing RJ; Turecek J; Lin B; Olavarria JF
    J Comp Neurol; 2020 Mar; 528(4):650-663. PubMed ID: 31606892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of monocular blockade of retinal activity on the development of visual callosal connections in the rat.
    Chang K; Van Sluyters RC; Olavarria JF
    Biol Res; 1995; 28(3):219-26. PubMed ID: 9251752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of visual callosal connections in neonatally enucleated rats.
    Olavarria J; Malach R; Van Sluyters RC
    J Comp Neurol; 1987 Jun; 260(3):321-48. PubMed ID: 3597836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blockade of retinal or cortical activity does not prevent the development of callosal patches normally associated with ocular dominance columns in primary visual cortex.
    Lu HC; Laing RJ; Olavarria JF
    Vis Neurosci; 2021 Aug; 38():E012. PubMed ID: 35502808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The callosal pattern in striate cortex is more patchy in monocularly enucleated albino than pigmented rats.
    Abel PL; Olavarria JF
    Neurosci Lett; 1996 Feb; 204(3):169-72. PubMed ID: 8938257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional masking of deprived eye responses by callosal input during ocular dominance plasticity.
    Restani L; Cerri C; Pietrasanta M; Gianfranceschi L; Maffei L; Caleo M
    Neuron; 2009 Dec; 64(5):707-18. PubMed ID: 20005826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-critical period plasticity of callosal transfer to visual cortex cells of cats following early conditioning of monocular deprivation and late optic chiasm transection.
    Yinon U; Hammer A
    Brain Res; 1990 May; 516(1):84-90. PubMed ID: 2364285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vascular endothelial growth factor B prevents the shift in the ocular dominance distribution of visual cortical neurons in monocularly deprived rats.
    Shan L; Yong H; Song Q; Wei Y; Qin R; Zhang G; Xu M; Zhang S
    Exp Eye Res; 2013 Apr; 109():17-21. PubMed ID: 23370270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Timing of the critical period for plasticity of ocular dominance columns in macaque striate cortex.
    Horton JC; Hocking DR
    J Neurosci; 1997 May; 17(10):3684-709. PubMed ID: 9133391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Callosal contribution to ocular dominance in rat primary visual cortex.
    Cerri C; Restani L; Caleo M
    Eur J Neurosci; 2010 Oct; 32(7):1163-9. PubMed ID: 20726891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distributions of synaptic vesicle proteins and GAD65 in deprived and nondeprived ocular dominance columns in layer IV of kitten primary visual cortex are unaffected by monocular deprivation.
    Silver MA; Stryker MP
    J Comp Neurol; 2000 Jul; 422(4):652-64. PubMed ID: 10861531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Eye-Specific Domains and Their Relation to Callosal Connections in Primary Visual Cortex of Long Evans Rats.
    Laing RJ; Turecek J; Takahata T; Olavarria JF
    Cereb Cortex; 2015 Oct; 25(10):3314-29. PubMed ID: 24969475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual hemispheric dominance induced in split brain cats during development: a model of deficient interhemispheric transfer derived from physiological evidence in single visual cortex cells.
    Yinon U
    Behav Brain Res; 1994 Oct; 64(1-2):97-110. PubMed ID: 7840897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuronal connections of eye-dominance columns in the cat cerebral cortex after monocular deprivation.
    Alekseenko SV; Toporova SN; Shkorbatova PY
    Neurosci Behav Physiol; 2008 Sep; 38(7):669-75. PubMed ID: 18709465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual experience-dependent development of ocular dominance columns in pigmented rats.
    Zhou Q; Li H; Yao S; Takahata T
    Cereb Cortex; 2023 Aug; 33(16):9450-9464. PubMed ID: 37415464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The size of the zone of origin of callosal afferents projecting to the primary visual cortex contralateral to the remaining eye in rats monocularly enucleated at different postnatal ages.
    Wree A; Angenendt HW; Zilles K
    Anat Embryol (Berl); 1986; 174(1):91-6. PubMed ID: 3706777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo evaluation of retinal and callosal projections in early postnatal development and plasticity using manganese-enhanced MRI and diffusion tensor imaging.
    Chan KC; Cheng JS; Fan S; Zhou IY; Yang J; Wu EX
    Neuroimage; 2012 Feb; 59(3):2274-83. PubMed ID: 21985904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of retinal input on the development of striate-extrastriate patterns of connections in the rat.
    Laing RJ; Bock AS; Lasiene J; Olavarria JF
    J Comp Neurol; 2012 Oct; 520(14):3256-76. PubMed ID: 22430936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of callosal afferents of the primary visual cortex ipsilateral to the remaining eye in rats monocularly enucleated at different stages of ontogeny.
    Wree A; Kulig G; Gutmann P; Zilles K
    Cell Tissue Res; 1985; 242(2):433-6. PubMed ID: 4053173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.