BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 33684098)

  • 1. A multiscale model via single-cell transcriptomics reveals robust patterning mechanisms during early mammalian embryo development.
    Cang Z; Wang Y; Wang Q; Cho KWY; Holmes W; Nie Q
    PLoS Comput Biol; 2021 Mar; 17(3):e1008571. PubMed ID: 33684098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does mouse embryo primordial germ cell activation start before implantation as suggested by single-cell transcriptomics dynamics?
    Gerovska D; Araúzo-Bravo MJ
    Mol Hum Reprod; 2016 Mar; 22(3):208-25. PubMed ID: 26740066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst.
    Yamanaka Y; Lanner F; Rossant J
    Development; 2010 Mar; 137(5):715-24. PubMed ID: 20147376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular architecture of lineage allocation and tissue organization in early mouse embryo.
    Peng G; Suo S; Cui G; Yu F; Wang R; Chen J; Chen S; Liu Z; Chen G; Qian Y; Tam PPL; Han JJ; Jing N
    Nature; 2019 Aug; 572(7770):528-532. PubMed ID: 31391582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allocation of inner cells to epiblast vs primitive endoderm in the mouse embryo is biased but not determined by the round of asymmetric divisions (8→16- and 16→32-cells).
    Krupa M; Mazur E; Szczepańska K; Filimonow K; Maleszewski M; Suwińska A
    Dev Biol; 2014 Jan; 385(1):136-48. PubMed ID: 24041854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcription factor kinetics and the emerging asymmetry in the early mammalian embryo.
    Pantazis P; Bollenbach T
    Cell Cycle; 2012 Jun; 11(11):2055-8. PubMed ID: 22580473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FGF4 is a limiting factor controlling the proportions of primitive endoderm and epiblast in the ICM of the mouse blastocyst.
    Krawchuk D; Honma-Yamanaka N; Anani S; Yamanaka Y
    Dev Biol; 2013 Dec; 384(1):65-71. PubMed ID: 24063807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single cell transcriptome analysis of human, marmoset and mouse embryos reveals common and divergent features of preimplantation development.
    Boroviak T; Stirparo GG; Dietmann S; Hernando-Herraez I; Mohammed H; Reik W; Smith A; Sasaki E; Nichols J; Bertone P
    Development; 2018 Nov; 145(21):. PubMed ID: 30413530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulating the mammalian blastocyst--molecular and mechanical interactions pattern the embryo.
    Krupinski P; Chickarmane V; Peterson C
    PLoS Comput Biol; 2011 May; 7(5):e1001128. PubMed ID: 21573197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational models for the dynamics of early mouse embryogenesis.
    Tosenberger A; Gonze D; Chazaud C; Dupont G
    Int J Dev Biol; 2019; 63(3-4-5):131-142. PubMed ID: 31058292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic patterning in the mouse pre-implantation embryo.
    Dietrich JE; Hiiragi T
    Development; 2007 Dec; 134(23):4219-31. PubMed ID: 17978007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MCRS1 is essential for epiblast development during early mouse embryogenesis.
    Cui W; Cheong A; Wang Y; Tsuchida Y; Liu Y; Tremblay KD; Mager J
    Reproduction; 2020 Jan; 159(1):1-13. PubMed ID: 31671403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell fate in the early mouse embryo: sorting out the influence of developmental history on lineage choice.
    Morris SA
    Reprod Biomed Online; 2011 Jun; 22(6):521-4. PubMed ID: 21493152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational analysis of single-cell transcriptomics data elucidates the stabilization of Oct4 expression in the E3.25 mouse preimplantation embryo.
    Gerovska D; Araúzo-Bravo MJ
    Sci Rep; 2019 Jun; 9(1):8930. PubMed ID: 31222057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Epiblast and primitive endoderm cell specification during mouse preimplantation development: a combination between biology and mathematical modeling].
    Bessonnard S; Gonze D; Dupont G
    Med Sci (Paris); 2016 Feb; 32(2):192-7. PubMed ID: 26936177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gata6, Nanog and Erk signaling control cell fate in the inner cell mass through a tristable regulatory network.
    Bessonnard S; De Mot L; Gonze D; Barriol M; Dennis C; Goldbeter A; Dupont G; Chazaud C
    Development; 2014 Oct; 141(19):3637-48. PubMed ID: 25209243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell fate regulation in early mammalian development.
    Oron E; Ivanova N
    Phys Biol; 2012 Aug; 9(4):045002. PubMed ID: 22871593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. p38 (Mapk14/11) occupies a regulatory node governing entry into primitive endoderm differentiation during preimplantation mouse embryo development.
    Thamodaran V; Bruce AW
    Open Biol; 2016 Sep; 6(9):. PubMed ID: 27605380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A developmental coordinate of pluripotency among mice, monkeys and humans.
    Nakamura T; Okamoto I; Sasaki K; Yabuta Y; Iwatani C; Tsuchiya H; Seita Y; Nakamura S; Yamamoto T; Saitou M
    Nature; 2016 Sep; 537(7618):57-62. PubMed ID: 27556940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HIPPO pathway members restrict SOX2 to the inner cell mass where it promotes ICM fates in the mouse blastocyst.
    Wicklow E; Blij S; Frum T; Hirate Y; Lang RA; Sasaki H; Ralston A
    PLoS Genet; 2014 Oct; 10(10):e1004618. PubMed ID: 25340657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.