BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 33684219)

  • 1. Identification of permissive amber suppression sites for efficient non-canonical amino acid incorporation in mammalian cells.
    Bartoschek MD; Ugur E; Nguyen TA; Rodschinka G; Wierer M; Lang K; Bultmann S
    Nucleic Acids Res; 2021 Jun; 49(11):e62. PubMed ID: 33684219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Robust and Quantitative Reporter System To Evaluate Noncanonical Amino Acid Incorporation in Yeast.
    Stieglitz JT; Kehoe HP; Lei M; Van Deventer JA
    ACS Synth Biol; 2018 Sep; 7(9):2256-2269. PubMed ID: 30139255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolved sequence contexts for highly efficient amber suppression with noncanonical amino acids.
    Pott M; Schmidt MJ; Summerer D
    ACS Chem Biol; 2014 Dec; 9(12):2815-22. PubMed ID: 25299570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual stop codon suppression in mammalian cells with genomically integrated genetic code expansion machinery.
    Meineke B; Heimgärtner J; Caridha R; Block MF; Kimler KJ; Pires MF; Landreh M; Elsässer SJ
    Cell Rep Methods; 2023 Nov; 3(11):100626. PubMed ID: 37935196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methanomethylophilus alvus Mx1201 Provides Basis for Mutual Orthogonal Pyrrolysyl tRNA/Aminoacyl-tRNA Synthetase Pairs in Mammalian Cells.
    Meineke B; Heimgärtner J; Lafranchi L; Elsässer SJ
    ACS Chem Biol; 2018 Nov; 13(11):3087-3096. PubMed ID: 30260624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response and adaptation of Escherichia coli to suppression of the amber stop codon.
    Wang Q; Sun T; Xu J; Shen Z; Briggs SP; Zhou D; Wang L
    Chembiochem; 2014 Aug; 15(12):1744-9. PubMed ID: 25044429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-Specific Incorporation of Two ncAAs for Two-Color Bioorthogonal Labeling and Crosslinking of Proteins on Live Mammalian Cells.
    Meineke B; Heimgärtner J; Eirich J; Landreh M; Elsässer SJ
    Cell Rep; 2020 Jun; 31(12):107811. PubMed ID: 32579937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increasing the fidelity of noncanonical amino acid incorporation in cell-free protein synthesis.
    Gan Q; Fan C
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt B):3047-3052. PubMed ID: 27919800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance analysis of orthogonal pairs designed for an expanded eukaryotic genetic code.
    Nehring S; Budisa N; Wiltschi B
    PLoS One; 2012; 7(4):e31992. PubMed ID: 22493661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploration of
    Stieglitz JT; Lahiri P; Stout MI; Van Deventer JA
    ACS Synth Biol; 2022 May; 11(5):1824-1834. PubMed ID: 35417129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissecting the Contribution of Release Factor Interactions to Amber Stop Codon Reassignment Efficiencies of the
    Schwark DG; Schmitt MA; Fisk JD
    Genes (Basel); 2018 Nov; 9(11):. PubMed ID: 30424562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-Wide Screen for Enhanced Noncanonical Amino Acid Incorporation in Yeast.
    Zackin MT; Stieglitz JT; Van Deventer JA
    ACS Synth Biol; 2022 Nov; 11(11):3669-3680. PubMed ID: 36346914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoupling Protein Production from Cell Growth Enhances the Site-Specific Incorporation of Noncanonical Amino Acids in
    Galindo Casas M; Stargardt P; Mairhofer J; Wiltschi B
    ACS Synth Biol; 2020 Nov; 9(11):3052-3066. PubMed ID: 33150786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering the Genetic Code in Cells and Animals: Biological Considerations and Impacts.
    Wang L
    Acc Chem Res; 2017 Nov; 50(11):2767-2775. PubMed ID: 28984438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered Human Induced Pluripotent Cells Enable Genetic Code Expansion in Brain Organoids.
    van Husen LS; Katsori AM; Meineke B; Tjernberg LO; Schedin-Weiss S; Elsässer SJ
    Chembiochem; 2021 Nov; 22(22):3208-3213. PubMed ID: 34431592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A CHO-Based Cell-Free Dual Fluorescence Reporter System for the Straightforward Assessment of Amber Suppression and scFv Functionality.
    Krebs SK; Rakotoarinoro N; Stech M; Zemella A; Kubick S
    Front Bioeng Biotechnol; 2022; 10():873906. PubMed ID: 35573244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadening the Toolkit for Quantitatively Evaluating Noncanonical Amino Acid Incorporation in Yeast.
    Stieglitz JT; Potts KA; Van Deventer JA
    ACS Synth Biol; 2021 Nov; 10(11):3094-3104. PubMed ID: 34730946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient multisite unnatural amino acid incorporation in mammalian cells via optimized pyrrolysyl tRNA synthetase/tRNA expression and engineered eRF1.
    Schmied WH; Elsässer SJ; Uttamapinant C; Chin JW
    J Am Chem Soc; 2014 Nov; 136(44):15577-83. PubMed ID: 25350841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linker and N-Terminal Domain Engineering of Pyrrolysyl-tRNA Synthetase for Substrate Range Shifting and Activity Enhancement.
    Jiang HK; Lee MN; Tsou JC; Chang KW; Tseng HW; Chen KP; Li YK; Wang YS
    Front Bioeng Biotechnol; 2020; 8():235. PubMed ID: 32322577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Pyrrolysyl-tRNA Synthetase Activity can be Improved by a P188 Mutation that Stabilizes the Full-Length Enzyme.
    Cho CC; Blankenship LR; Ma X; Xu S; Liu W
    J Mol Biol; 2022 Apr; 434(8):167453. PubMed ID: 35033561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.