BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 33684626)

  • 1. Modality-general and modality-specific audiovisual valence processing.
    Gao C; Shinkareva SV
    Cortex; 2021 May; 138():127-137. PubMed ID: 33684626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modality-general representations of valences perceived from visual and auditory modalities.
    Gu J; Cao L; Liu B
    Neuroimage; 2019 Dec; 203():116199. PubMed ID: 31536804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Representations of modality-general valence for videos and music derived from fMRI data.
    Kim J; Shinkareva SV; Wedell DH
    Neuroimage; 2017 Mar; 148():42-54. PubMed ID: 28057489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An fMRI Study of Affective Congruence across Visual and Auditory Modalities.
    Gao C; Weber CE; Wedell DH; Shinkareva SV
    J Cogn Neurosci; 2020 Jul; 32(7):1251-1262. PubMed ID: 32108554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Representations of modality-specific affective processing for visual and auditory stimuli derived from functional magnetic resonance imaging data.
    Shinkareva SV; Wang J; Kim J; Facciani MJ; Baucom LB; Wedell DH
    Hum Brain Mapp; 2014 Jul; 35(7):3558-68. PubMed ID: 24302696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imagery and retrieval of auditory and visual information: neural correlates of successful and unsuccessful performance.
    Huijbers W; Pennartz CM; Rubin DC; Daselaar SM
    Neuropsychologia; 2011 Jun; 49(7):1730-40. PubMed ID: 21396384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncertainty in visual and auditory series is coded by modality-general and modality-specific neural systems.
    Nastase S; Iacovella V; Hasson U
    Hum Brain Mapp; 2014 Apr; 35(4):1111-28. PubMed ID: 23408389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural representations of the perception of handwritten digits and visual objects from a convolutional neural network compared to humans.
    Lee J; Jung M; Lustig N; Lee JH
    Hum Brain Mapp; 2023 Apr; 44(5):2018-2038. PubMed ID: 36637109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human brain activity associated with audiovisual perception and attention.
    Degerman A; Rinne T; Pekkola J; Autti T; Jääskeläinen IP; Sams M; Alho K
    Neuroimage; 2007 Feb; 34(4):1683-91. PubMed ID: 17204433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal dynamics of audiovisual affective processing.
    Gao C; Wedell DH; Green JJ; Jia X; Mao X; Guo C; Shinkareva SV
    Biol Psychol; 2018 Nov; 139():59-72. PubMed ID: 30291876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding the temporal dynamics of affective scene processing.
    Bo K; Cui L; Yin S; Hu Z; Hong X; Kim S; Keil A; Ding M
    Neuroimage; 2022 Nov; 261():119532. PubMed ID: 35931307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Audiovisual Representations of Valence: a Cross-study Perspective.
    Shinkareva SV; Gao C; Wedell D
    Affect Sci; 2020 Dec; 1(4):237-246. PubMed ID: 36042819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interconnected large-scale systems for three fundamental cognitive tasks revealed by functional MRI.
    Hirsch J; Moreno DR; Kim KH
    J Cogn Neurosci; 2001 Apr; 13(3):389-405. PubMed ID: 11371315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The neural basis of complex audiovisual objects maintenances in working memory.
    Xie YJ; Li YY; Xie B; Xu YY; Peng L
    Neuropsychologia; 2019 Oct; 133():107189. PubMed ID: 31513808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Momentary lapses of attention in multisensory environment.
    Su W; Guo Q; Li Y; Zhang K; Zhang Y; Chen Q
    Cortex; 2020 Oct; 131():195-209. PubMed ID: 32906014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural Correlates of Temporal Complexity and Synchrony during Audiovisual Correspondence Detection.
    Baumann O; Vromen JMG; Cheung A; McFadyen J; Ren Y; Guo CC
    eNeuro; 2018; 5(1):. PubMed ID: 29354682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Audiovisual functional magnetic resonance imaging adaptation reveals multisensory integration effects in object-related sensory cortices.
    Doehrmann O; Weigelt S; Altmann CF; Kaiser J; Naumer MJ
    J Neurosci; 2010 Mar; 30(9):3370-9. PubMed ID: 20203196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The brain basis of audiovisual affective processing: Evidence from a coordinate-based activation likelihood estimation meta-analysis.
    Gao C; Weber CE; Shinkareva SV
    Cortex; 2019 Nov; 120():66-77. PubMed ID: 31255920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep neural network predicts emotional responses of the human brain from functional magnetic resonance imaging.
    Kim HC; Bandettini PA; Lee JH
    Neuroimage; 2019 Feb; 186():607-627. PubMed ID: 30366076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Being First Matters: Topographical Representational Similarity Analysis of ERP Signals Reveals Separate Networks for Audiovisual Temporal Binding Depending on the Leading Sense.
    Cecere R; Gross J; Willis A; Thut G
    J Neurosci; 2017 May; 37(21):5274-5287. PubMed ID: 28450537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.